Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (9): 1326-1333.DOI: 10.12068/j.issn.1005-3026.2024.09.014
• Resources & Civil Engineering • Previous Articles
Ya-chun MAO1, Zhe-xi YANG1(), Wang CAO1, QI Ji2
Received:
2023-05-08
Online:
2024-09-15
Published:
2024-12-16
Contact:
Zhe-xi YANG
About author:
YANG Zhe-xi,E-mail:yangzhexi_neu@163.com.CLC Number:
Ya-chun MAO, Zhe-xi YANG, Wang CAO, QI Ji. Extraction of Road Point Cloud in Open Pit Based on Multi-feature Constraints[J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1326-1333.
参数名 | 最优参数 | Accuracy | F1 | Oob |
---|---|---|---|---|
决策树划分标准 | Gini | 0.962?773 | 0.961?037 | 0.981?782 |
最佳决策树数量 | 37 | 0.963?026 | 0.961?533 | 0.985?605 |
决策树最大深度 | 10 | 0.964?306 | 0.962?922 | 0.980?794 |
分割内部节点所需的最小样本数 | 16 | 0.964?448 | 0.963?075 | 0.980?963 |
叶节点所需的最小样本数 | 2 | 0.963?453 | 0.961?997 | 0.981?033 |
最大特征数 | 5 | 0.963?879 | 0.962?459 | 0.982?851 |
Table 1 Overall score of optimal parameters
参数名 | 最优参数 | Accuracy | F1 | Oob |
---|---|---|---|---|
决策树划分标准 | Gini | 0.962?773 | 0.961?037 | 0.981?782 |
最佳决策树数量 | 37 | 0.963?026 | 0.961?533 | 0.985?605 |
决策树最大深度 | 10 | 0.964?306 | 0.962?922 | 0.980?794 |
分割内部节点所需的最小样本数 | 16 | 0.964?448 | 0.963?075 | 0.980?963 |
叶节点所需的最小样本数 | 2 | 0.963?453 | 0.961?997 | 0.981?033 |
最大特征数 | 5 | 0.963?879 | 0.962?459 | 0.982?851 |
类别 | 正确点个数 | 错误点个数 | 总数 | 误差/% |
---|---|---|---|---|
道路点 | 90?854 | 1?622 | 92?476 | 1.754 |
非道路点 | 1 902 353 | 6 793 | 1?909?146 | 0.356 |
总数 | 1 993 207 | 8 415 | 2?001?622 | 0.420 |
Table 2 Extraction errors of road point cloud in open pit
类别 | 正确点个数 | 错误点个数 | 总数 | 误差/% |
---|---|---|---|---|
道路点 | 90?854 | 1?622 | 92?476 | 1.754 |
非道路点 | 1 902 353 | 6 793 | 1?909?146 | 0.356 |
总数 | 1 993 207 | 8 415 | 2?001?622 | 0.420 |
类别 | 道路判定误差/% |
---|---|
正确提取 | 93.043 |
错误提取 | 6.957 |
Table 3 Judgment errors of road point cloud in open pit
类别 | 道路判定误差/% |
---|---|
正确提取 | 93.043 |
错误提取 | 6.957 |
1 | Tong X H, Liu X F, Chen P,et al.Integration of UAV‑based photogrammetry and terrestrial laser scanning for the three‑dimensional mapping and monitoring of open‑pit mine areas[J].Remote Sensing,2015,7(6):6635-6662. |
2 | Ma L F, Li Y, Li J,et al.Mobile laser scanned point‑clouds for road object detection and extraction:a review[J].Remote Sensing,2018,10(10):1531. |
3 | Huang W X, Liang H W, Lin L L,et al.A fast point cloud ground segmentation approach based on coarse‑to‑fine Markov random field[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(7):7841-7854. |
4 | Mi X X, Yang B S, Dong Z,et al.Automated 3D road boundary extraction and vectorization using MLS point clouds[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(6):5287-5297. |
5 | Li K, Shao J J, Guo D.A multi‑feature search window method for road boundary detection based on LIDAR data[J].Sensors,2019,19(7):1551. |
6 | Lu X W, Ai Y F, Tian B.Real‑time mine road boundary detection and tracking for autonomous truck[J].Sensors,2020,20(4):1121. |
7 | Kumar P, Lewis P, McElhinney C P,et al.Snake energy analysis and result validation for a mobile laser scanning data‑based automated road edge extraction algorithm[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(2):763-773. |
8 | Xiong H Y, Zhu T H, Liu Y,et al.Road‑model‑based road boundary extraction for high definition map via LIDAR[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(10):18456-18465. |
9 | 程效军,郭王,李泉,等.基于强度与颜色信息的地面LiDAR点云联合分类方法[J].中国激光,2017,44(10):273-280. |
Cheng Xiao‑jun, Guo Wang, Li Quan,et al.Joint classification method for terrestrial LiDAR point cloud based on intensity and color information[J].Chinese Journal of Lasers,2017,44(10):273-280. | |
10 | Yadav M.A multi‑constraint combined method for road extraction from airborne laser scanning data[J].Measurement,2021,186:110077. |
11 | Grilli E, Remondino F.Machine learning generalisation across different 3D architectural heritage[J].ISPRS International Journal of Geo‑information,2020,9(6):379. |
12 | Biçici S, Zeybek M.Effectiveness of training sample and features for random forest on road extraction from unmanned aerial vehicle‑based point cloud[J].Transportation Research Record:Journal of the Transportation Research Board,2021,2675(12):401-418. |
13 | Ferraz A, Mallet C, Chehata N.Large scale road network extraction in forested moutainous areas using airborne laser scanning data[C]//2014 IEEE Geoscience and Remote Sensing Symposium.Quebec City:IEEE,2014:4315-4318. |
14 | Ferraz A, Mallet C, Chehata N.Large‑scale road detection in forested mountainous areas using airborne topographic lidar data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2016,112:23-36. |
15 | Deng L Y, Yang M, Liang Z D,et al.Fusing geometrical and visual information via superpoints for the semantic segmentation of 3D road scenes[J].Tsinghua Science and Technology,2020,25(4):498-507. |
16 | Ma L F, Li Y, Li J,et al.BoundaryNet:extraction and completion of road boundaries with deep learning using mobile laser scanning point clouds and satellite imagery[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(6):5638-5654. |
17 | 张爱武,刘路路,张希珍.道路三维点云多特征卷积神经网络语义分割方法[J].中国激光,2020,47(4):269-277. |
Zhang Ai‑wu, Liu Lu‑lu, Zhang Xi‑zhen.Multi‑feature 3D road point cloud semantic segmentation method based on convolutional neural network[J].Chinese Journal of Lasers,2020,47(4):269-277. | |
18 | 李健,姚亮.融合多特征深度学习的地面激光点云语义分割[J].测绘科学,2021,46(3):133-139,162. |
Li Jian, Yao Liang.Ground laser point cloud semantic segmentation based on multi‑feature deep learning[J].Science of Surveying and Mapping,2021,46(3):133-139,162. | |
19 | Breiman L.Random forests[J].Machine Language,2001,45(1):5-32. |
20 | 毛亚纯,伏雨文,曹旺,等.基于无人机点云数据的露天采场矿车提取方法[J].东北大学学报(自然科学版),2021,42(6):842-848,863. |
Mao Ya‑chun, Fu Yu‑wen, Cao Wang,et al.Extraction method of open pit mine car based on UAV point cloud data[J].Journal of Northeastern University (Natural Science),2021,42(6):842-848,863. |
[1] | MAO Ya-chun, FU Yu-wen, CAO Wang, ZHAO Zhan-guo. Extraction Method of Open Pit Mine Car Based on UAV Point Cloud Data [J]. Journal of Northeastern University(Natural Science), 2021, 42(6): 842-849. |
[2] | WEI Lian-huan, LIU Shan-jun, YANG Tian-hong, ZHAO Ye. Collaborative Monitoring of Open Pit Mine Induced Large Scale Landslide with LiDAR DEM and Time Series SAR Data [J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1753-1760. |
[3] | MAO Ya-chun, CAO Wang, ZHAO Zhan-guo, XU Mao-lin. Error Correction and Deformation Analysis of GB-SAR Monitoring Based on the Multiple Regression Model [J]. Journal of Northeastern University Natural Science, 2020, 41(1): 125-130. |
[4] | WANG Qing, GU Xiao-wei, XU Xiao-chuan. Influence of Cutoff Grade on Optimum Pit Limit and Total Profit [J]. Journal of Northeastern University Natural Science, 2018, 39(8): 1187-1191. |
[5] | XU Xiao-chuan, GU Xiao-wei, WANG Qing, ZHANG Wei-feng. Ultimate Metal Pit Optimization with Various Wall Slope [J]. Journal of Northeastern University Natural Science, 2018, 39(5): 716-721. |
[6] | XU Xiao-chuan, GU Xiao-wei, WANG Qing , LIU Jian-ping. Influence of Multi-factors on Ultimate Pit Design of Open Pit Mine [J]. Journal of Northeastern University Natural Science, 2018, 39(4): 570-574. |
[7] | GU Xiao-wei, ZHAO Yun-qi, WANG Qing, XU Xiao-chuan. Relationship Between Cut-off Grade and Ultimate Pit of Open Pit Mine [J]. Journal of Northeastern University Natural Science, 2018, 39(4): 575-578. |
[8] | XU Xiao-chuan, GU Xiao-wei, WANG Qing, LIU Jian-ping. Optimizing the Whole Boundary of Open Pit Mining Areas with Restrictions [J]. Journal of Northeastern University Natural Science, 2016, 37(1): 79-84. |
[9] | LI Hai-ying, REN Feng-yu, YAN Guo-fu, ZHAO Yun-feng. Control Method of Rock Caving Hazard During Transition from Open Pit to Underground Mining [J]. Journal of Northeastern University Natural Science, 2015, 36(3): 419-423. |
[10] | XU Xiaochuan, GU Xiaowei, WANG Qing, LIU Jianping. Improved Optimization Algorithm of Ultimate Pit for Open Pit Metal Mine [J]. Journal of Northeastern University Natural Science, 2014, 35(8): 1195-1198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||