Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (2): 28-34.DOI: 10.12068/j.issn.1005-3026.2025.20230256
• Materials & Metallurgy • Previous Articles Next Articles
Jin-yang WANG, Zhao-xia WU(), Zhong-zheng LI, Zeng-xin KANG
Received:
2023-08-31
Online:
2025-02-15
Published:
2025-05-20
Contact:
Zhao-xia WU
CLC Number:
Jin-yang WANG, Zhao-xia WU, Zhong-zheng LI, Zeng-xin KANG. Prediction Model of Burning Through Point Based on JITL-XGBoost[J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 28-34.
Table 1 Main parameters of sintering process
过程参数 | CMI值 | 过程参数 | CMI值 |
---|---|---|---|
20号风箱废气温度 | 0.517 500 | 焦粉 | 0.419 891 |
1号风箱废气温度 | 0.366 053 | 7号风箱真空度 | 0.355 897 |
2号风机风量 | 0.353 517 | 11号风箱真空度 | 0.276 374 |
7号风箱废气温度 | 0.273 018 | 22号风箱废气温度 | 0.233 880 |
3号风箱废气温度 | 0.174 285 | 混合料CaO质量分数 | 0.172 590 |
混合料V2O5质量分数 | 0.148 207 | TFe | 0.145 821 |
9号风箱真空度 | 0.143 866 | 2号风箱废气温度 | 0.141 890 |
混合料SiO2硅质量分数 | 0.134 581 | 烧结机速度 | 0.133 350 |
2号风箱真空度 | 0.129 686 | 混合料除尘灰质量分数 | 0.127 677 |
13号风箱废气温度 | 0.126 931 | 混合料水分质量分数 | 0.125 018 |
5号风箱真空度 | 0.121 172 | 15号风箱废气温度 | 0.113 292 |
5号风箱废气温度 | 0.105 676 | 11号风箱废气温度 | 0.105 623 |
烟道温度 | 0.103 928 | 3号风箱真空度 | 0.093 048 |
Table 2 Calculation results of CMI
过程参数 | CMI值 | 过程参数 | CMI值 |
---|---|---|---|
20号风箱废气温度 | 0.517 500 | 焦粉 | 0.419 891 |
1号风箱废气温度 | 0.366 053 | 7号风箱真空度 | 0.355 897 |
2号风机风量 | 0.353 517 | 11号风箱真空度 | 0.276 374 |
7号风箱废气温度 | 0.273 018 | 22号风箱废气温度 | 0.233 880 |
3号风箱废气温度 | 0.174 285 | 混合料CaO质量分数 | 0.172 590 |
混合料V2O5质量分数 | 0.148 207 | TFe | 0.145 821 |
9号风箱真空度 | 0.143 866 | 2号风箱废气温度 | 0.141 890 |
混合料SiO2硅质量分数 | 0.134 581 | 烧结机速度 | 0.133 350 |
2号风箱真空度 | 0.129 686 | 混合料除尘灰质量分数 | 0.127 677 |
13号风箱废气温度 | 0.126 931 | 混合料水分质量分数 | 0.125 018 |
5号风箱真空度 | 0.121 172 | 15号风箱废气温度 | 0.113 292 |
5号风箱废气温度 | 0.105 676 | 11号风箱废气温度 | 0.105 623 |
烟道温度 | 0.103 928 | 3号风箱真空度 | 0.093 048 |
模型 | |||
---|---|---|---|
JITL-GPR | 0.064 9 | 0.013 8 | 0.117 4 |
JITL-SVR | 0.057 5 | 0.006 9 | 0.083 3 |
XGBoost | 0.034 2 | 0.027 3 | 0.165 2 |
JITL-XGBoost | 0.029 9 | 0.003 8 | 0.061 6 |
Table 3 Comparison of prediction performance of different prediction models
模型 | |||
---|---|---|---|
JITL-GPR | 0.064 9 | 0.013 8 | 0.117 4 |
JITL-SVR | 0.057 5 | 0.006 9 | 0.083 3 |
XGBoost | 0.034 2 | 0.027 3 | 0.165 2 |
JITL-XGBoost | 0.029 9 | 0.003 8 | 0.061 6 |
1 | Du S, Wu M, Chen L F, et al. A fuzzy control strategy of burn-through point based on the feature extraction of time-series trend for iron ore sintering process[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2357-2368. |
2 | Patisson F, Bellot J P, Ablitzer D, et al. Mathematical modelling of iron ore sintering process[J]. Ironmaking & Steelmaking, 1991, 18(2): 89-95. |
3 | Cumming M J, Thurlby J A. Developments in modelling and simulation of iron ore sintering[J]. Ironmaking & Steelmaking, 1990, 17(4): 245-254. |
4 | Chen X X, Shi X H, Tong C D. Multi-time-scale TFe prediction for iron ore sintering process with complex time delay[J]. Control Engineering Practice, 2019, 89: 84-93. |
5 | Du S, Wu M, Chen L F, et al. Prediction model of burn-through point with fuzzy time series for iron ore sintering process[J]. Engineering Applications of Artificial Intelligence, 2021, 102: 104259. |
6 | Chen X, Hu J, Wu M, et al. T–S fuzzy logic based modeling and robust control for burning-through point in sintering process[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9378-9388. |
7 | Liu S, Lyu Q, Liu X J, et al. A prediction system of burn through point based on gradient boosting decision tree and decision rules[J]. ISIJ International, 2019, 59(12): 2156-2164. |
8 | Wang D D, Yang K, He Z J, et al. Application research based on GA-FWA in prediction of sintering burning through point[C]//Proceedings of 2018 International Conference on Computer, Communications and Mechatronics Engineering. Shanghai,2018: 378-385. |
9 | 赵济民, 何杨, 刘建华, 等. 基于即时学习算法的铸坯质量预测方法[J]. 连铸, 2022, 47(6): 54-60, 67. |
Zhao Ji-min, He Yang, Liu Jian-hua, et al. Predictive method of casting slab quality based on just-in-time learning algorithm[J]. Continuous Casting, 2022, 47(6): 54-60, 67. | |
10 | 任明仑, 宋月丽, 褚伟. 灰铸铁抗拉强度预测的局部加权线性回归建模[J]. 电子测量与仪器学报, 2019, 33(3): 65-71. |
Ren Ming-lun, Song Yue-li, Chu Wei. Locally weighted linear regression modeling for tensile strength prediction of gray cast iron[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(3): 65-71. | |
11 | 王通, 高宪文, 刘文芳. 基于改进即时学习算法的动液面软测量建模[J]. 东北大学学报(自然科学版), 2015, 36(7): 918-922. |
Wang Tong, Gao Xian-wen, Liu Wen-fang. Soft sensor for determination of dynamic fluid levels based on enhanced just-in-time learning algorithm[J]. Journal of Northeastern University (Natural Science), 2015,36(7): 918-922. | |
12 | Xia G L, Wu Z X, Liu M Y, et al. Prediction interval estimation of sinter drum index based on light gradient boosting machine and kernel density estimation[J]. Ironmaking & Steelmaking, 2023, 50(8): 909-920. |
13 | Li D C, Huang W T, Chen C C, et al. Employing box plots to build high-dimensional manufacturing models for new products in TFT-LCD plants[J]. Neurocomputing, 2014, 142: 73-85. |
14 | Simon N, Tibshirani R. Comment on “detecting novel associations in large data sets” by reshef et Al, science dec 16, 2011[EB/OL].(2014-06-14)[2023-05-15]. 2014: 1401.7645. . |
15 | Li G Y, Li W, Tian X L, et al. Short-term electricity load forecasting based on the XGBoost algorithm[J]. Smart Grid, 2017, 7(4): 274-285. |
[1] | Guang-lei XIA, Zhao-xia WU, Meng-yuan LIU, Yu-shan JIANG. Prediction of Sinter Chemical Indexes Based on GMM-KNN-LSTM [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 314-322. |
[2] | Meng CHEN, Yu HONG. Test Study on Drying Shrinkage Properties of Engineered Cementitious Composites with RTP‐PVA Hybrid Fibre [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 407-414. |
[3] | Xiu-mei CAO, Wen ZHAO, Zhi-guo WANG, Peng HE. Prediction of Soil Conditioners for Sandy Soil Shield Based on Optuna-XGBoost [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1769-1777. |
[4] | Meng-yuan LIU, Zhao-xia WU, Jin-yang WANG, Guang-lei XIA. Air Permeability Prediction of Sinter Layer Based on TST-LSTM Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1379-1385. |
[5] | HUANG Chuan-qi, REN Yu-qian, WU Zhao-xia. A Stacked Generalization Ensemble-based Hybrid LGBM-RF-XGB Model for Sintering Moisture Prediction [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1245-1250. |
[6] | LIU Ke-qi, DU Dian-chun, ZHAO Wen, DING Wan-tao. Machine Learning-Based Prediction and Optimization of Slurry Shield’s Key Tunneling Parameters [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1621-1630. |
[7] | JIAO Zhi-jie, WANG Zhi-qiang, LUO Jun-yi, XU Zhi-peng. Study on Plate Angular Rolling Process Using Pattern Prediction Model [J]. Journal of Northeastern University(Natural Science), 2022, 43(6): 815-820. |
[8] | CHEN Bing, HAN Jin-yang, TANG Xiao-lei, XIA Bo-ran. Prediction Model for Elongation of Tension Leveling Based on Machine Learning Algorithm and Numerical Analysis [J]. Journal of Northeastern University(Natural Science), 2022, 43(2): 236-242. |
[9] | GONG Qi, CHEN Bing-zhi, LI Yong-hua, XIA Qing. Fault Analysis of Metro Power Supply Module and Prediction Method [J]. Journal of Northeastern University(Natural Science), 2022, 43(1): 8-16. |
[10] | GUO Yong-chun, ZHENG Hai-yan, HU Xin-guang, SHENG Feng-man. Prediction Model of Al2O3 Activity in CaO-SiO2-Al2O3-MgO Quaternary Slag System [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 652-657. |
[11] | ZHU Zi-zong, XIE Yang-yang, WU Qiang, SHI Guo-jing. Coke-Making with Modified Xinjiang Kubai Coals and Prediction the Cold Strength of Coke [J]. Journal of Northeastern University Natural Science, 2017, 38(12): 1726-1730. |
[12] | LI Xiao-peng, WANG Xue, YUN Hai-meng, AN Lian-chui. Static Friction Coefficient Fractal Model of Joint Surfaces with Elastic-Plastic Beformation Considered [J]. Journal of Northeastern University Natural Science, 2016, 37(5): 673-677. |
[13] | LIU Qing, YUAN Wei, WANG Bao, PENG Liang-zhen. Concentrate Grade Prediction of Gold Ore Based on GA-BP Neural Network [J]. Journal of Northeastern University Natural Science, 2015, 36(2): 237-240. |
[14] | LYU Wu, MAO Zhizhong, YUAN Ping, JIA Mingxing. Ladle Furnace End Point Sulphur Content Prediction Model Based on Model Migration Method〓 [J]. Journal of Northeastern University Natural Science, 2014, 35(3): 314-317. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||