1 |
Chen Z H, Liu M K, Ma G J, et al. Removal of residual element antimony from molten steel by CaC2-containing refining slag[J]. Metals, 2023, 13(3): 441.
|
2 |
Ana I, Moats M, Ríos G, et al. Removal of Sb impurities in copper electrolyte and evaluation of As and Fe species in an electrorefining plant[J]. Metals, 2021, 11(6): 902.
|
3 |
Besse F, Boulanger C, Bolle B, et al. Influence of electrochemical deposition conditions on the texture of bismuth antimony alloys[J]. Scripta Materialia, 2006, 54(6): 1111-1115.
|
4 |
Zhang Q H, de Oliveira V K, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews, 2012, 41(21): 7108-7146.
|
5 |
Multani R S, Feldmann T, Demopoulos G P. Antimony in the metallurgical industry: a review of its chemistry and environmental stabilization options[J]. Hydrometallurgy, 2016, 164: 141-153.
|
6 |
Wang Q, Liu F Y, Wang L, et al. Towards fast and low cost Sb2S3 anode preparation: a simple vapor transport deposition process by directly using antimony sulfide ore as raw material[J]. Scripta Materialia, 2019, 17(3): 75-79.
|
7 |
Weast R C, Astle M J, Beyer W H, et al. CRC handbook of chemistry and physics[J]. American Journal of the Medical Sciences, 1982, 257(6): 423.
|
8 |
Hodkin D J, Pollock J S, Sutcliffe P W. Handling, characterization, and monitoring of condensates produced by atomization from the molten state[J]. Powder Metallurgy, 1976, 19(1): 12-16.
|
9 |
Gabbitas B L, Ariff T F, Cao P. Synthesis of pewter alloy from tin‐copper‐antimony powder mixtures by microwave and conventional sintering[J]. Powder Metallurgy, 2010, 54(4): 488-496.
|
10 |
Li L B, Zhou L, Liu C H, et al. Preparation of antimony metal by carbothermal reduction of antimony oxide powder in a microwave field: mechanism and process[J]. Journal of Sustainable Metallurgy, 2024, 10(2): 603-624.
|
11 |
林艳, 谢刚, 杨大锦. H2SO4-NH4F-SbF3体系中锑(Ⅲ)的电沉积机理[J]. 有色金属(冶炼部分), 2010(3): 5-9.
|
|
Lin Yan, Xie Gang, Yang Da-jin. Electrodeposition mechanism of antimony(Ⅲ) in H2SO4-NH4F-SbF3 electrolyte system[J]. Nonferrous Metals (Extractive Metallurgy), 2010(3): 5-9.
|
12 |
Li X Y, Qu J K, Hu Z J, et al. Electrochemically converting Sb2S3/CNTs to Sb/CNTs composite anodes for sodium-ion batteries[J]. International Journal of Hydrogen Energy, 2021, 46(33): 17071-17083.
|
13 |
卜骄骄. 氯化胆碱-乙二醇低共熔溶剂中电解制备锑粉的研究[D]. 昆明:昆明理工大学, 2020.
|
|
Bu Jiao-jiao. Study on preparation of antimony powder by electrolysis in choline chloride ethylene glycol eutectic solvent[D]. Kunming: Kunming University of Science and Technology, 2020.
|
14 |
汝娟坚, 卜骄骄, 王志伟. 氯化胆碱-尿素-Sb2S3体系中电沉积制备锑粉的研究[J]. 科学技术创新, 2019(18): 35-36.
|
|
Ru Juan-jian, Bu Jiao-jiao, Wang Zhi-wei. Study on preparation of antimony powder by electrodeposition in choline chloride-urea-Sb2S3 system[J]. Scientific and Technological Innovation, 2019(18): 35-36.
|
15 |
王蒙蒙. 低共熔溶剂ChCl-EG低温电解Sb2O3粉制备锑粉的研究[D]. 昆明:昆明理工大学, 2016.
|
|
Wang Meng-meng. Study on the preparation of antimony powder by low-temperature electrolysis of Sb2O3 powder using deep eutectic solvent ChCl-EG[D]. Kunming: Kunming University of Science and Technology, 2016.
|
16 |
陈朝轶, 鲁雄刚, 李重和, 等. 三相界面反应机制在SOM法制备金属钽中的应用[J]. 中国有色金属学报, 2009, 19(3): 583-588.
|
|
Chen Chao-yi, Lu Xiong-gang, Li Chong-he, et al. Application of three-phase interline reaction mechanism on preparation of Ta metal using SOM process[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(3): 583-588.
|
17 |
徐献芝, 朱梅, 苏润, 等. 多孔电极三相界面形态的研究[J]. 化学通报, 2004, 67(10): 768-770.
|
|
Xu Xian-zhi, Zhu Mei, Su Run, et al. Research on the three-phase boundary shape of the porous electrode[J]. Chemistry Bulletin, 2004, 67(10): 768-770.
|
18 |
Schwandt C, Fray D J. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride[J]. Electrochimica Acta, 2006, 51(1): 66-76.
|
19 |
Elizabeth I, Singh B P, Gopukumar S. Electrochemical performance of Sb2S3/CNT free-standing flexible anode for Li-ion batteries[J]. Journal of Materials Science, 2019, 54(9): 7110-7118.
|
20 |
Sri Maha V D, Sanil N, Shakila L, et al. A study of the reaction pathways during electrochemical reduction of dense Nb2O5 pellets in molten CaCl2 medium[J]. Electrochimica Acta, 2013, 100: 51-62.
|