
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (12): 19-28.DOI: 10.12068/j.issn.1005-3026.2025.20240103
• Information & Control • Previous Articles Next Articles
Hong-ru LI, Tong-tong LI, Kang-kang SHI, Ying-hua YANG
Received:2024-05-05
Online:2025-12-15
Published:2026-02-09
Contact:
Hong-ru LI
CLC Number:
Hong-ru LI, Tong-tong LI, Kang-kang SHI, Ying-hua YANG. Prediabetes Detection Method Based on Multi-scale Analysis of HRV[J]. Journal of Northeastern University(Natural Science), 2025, 46(12): 19-28.
| J | Q | |||
|---|---|---|---|---|
| (2,1) | (4,1) | (6,1) | (4,2) | |
| 2 | 0.72 | 0.74 | 0.73 | 0.72 |
| 3 | 0.73 | 0.75 | 0.75 | 0.74 |
| 4 | 0.75 | 0.76 | 0.76 | 0.77 |
| 5 | 0.77 | 0.78 | 0.77 | 0.79 |
| 6 | 0.80 | 0.81 | 0.79 | 0.80 |
| 7 | 0.79 | 0.81 | 0.80 | 0.80 |
Table 2 Accuracy obtained with different values of J
| J | Q | |||
|---|---|---|---|---|
| (2,1) | (4,1) | (6,1) | (4,2) | |
| 2 | 0.72 | 0.74 | 0.73 | 0.72 |
| 3 | 0.73 | 0.75 | 0.75 | 0.74 |
| 4 | 0.75 | 0.76 | 0.76 | 0.77 |
| 5 | 0.77 | 0.78 | 0.77 | 0.79 |
| 6 | 0.80 | 0.81 | 0.79 | 0.80 |
| 7 | 0.79 | 0.81 | 0.80 | 0.80 |
| 方法 | 准确率 | 敏感度 | 特异度 | 精确度 | F1 |
|---|---|---|---|---|---|
| 特定生理尺度特征+CatBoost | 76.71 | 65.96 | 83.61 | 72.09 | 73.74 |
| 精细化尺度特征+CatBoost | 81.03 | 71.49 | 87.16 | 78.14 | 78.55 |
| 多尺度特征+CatBoost | 88.52 | 83.40 | 91.82 | 86.73 | 87.40 |
Table 3 Effects of single-scale and multi-scale models
| 方法 | 准确率 | 敏感度 | 特异度 | 精确度 | F1 |
|---|---|---|---|---|---|
| 特定生理尺度特征+CatBoost | 76.71 | 65.96 | 83.61 | 72.09 | 73.74 |
| 精细化尺度特征+CatBoost | 81.03 | 71.49 | 87.16 | 78.14 | 78.55 |
| 多尺度特征+CatBoost | 88.52 | 83.40 | 91.82 | 86.73 | 87.40 |
分类算法 | 准确率 | 敏感度 | 特异度 | 精确度 | F1 |
|---|---|---|---|---|---|
RF | 87.69 | 81.70 | 91.53 | 86.10 | 86.34 |
AdaBoost | 85.02 | 79.57 | 88.52 | 81.66 | 83.81 |
CatBoost | 88.52 | 83.40 | 91.82 | 86.73 | 87.40 |
XGBoost | 88.19 | 83.40 | 91.26 | 85.96 | 87.15 |
SVM | 73.37 | 75.85 | 71.67 | 64.80 | 69.89 |
Table 4 Performance indices of models with different
分类算法 | 准确率 | 敏感度 | 特异度 | 精确度 | F1 |
|---|---|---|---|---|---|
RF | 87.69 | 81.70 | 91.53 | 86.10 | 86.34 |
AdaBoost | 85.02 | 79.57 | 88.52 | 81.66 | 83.81 |
CatBoost | 88.52 | 83.40 | 91.82 | 86.73 | 87.40 |
XGBoost | 88.19 | 83.40 | 91.26 | 85.96 | 87.15 |
SVM | 73.37 | 75.85 | 71.67 | 64.80 | 69.89 |
| [1] | International Diabetes Federation. IDF diabetes atlas[M]. 10th ed. Brussels: International Diabetes Federation, 2021. |
| [2] | Wan H, Wang Y Y, Fang S J, et al. Associations between the neutrophil-to-lymphocyte ratio and diabetic complications in adults with diabetes: a cross-sectional study[J]. Journal of Diabetes Research, 2020, 2020(1): 6219545. |
| [3] | ElSayed N A, Aleppo G, Aroda V R, et al. 17 diabetes advocacy: standards of care in diabetes—2023[J]. Diabetes Care, 2023, 46(sup1): 279-280. |
| [4] | Echouffo-Tcheugui J B, Selvin E. Prediabetes and what it means: the epidemiological evidence[J]. Annual Review of Public Health, 2021, 42: 59-77. |
| [5] | Faerch K, Hulmán A, Solomon T P J. Heterogeneity of prediabetes and type 2 diabetes: implications for prediction, prevention and treatment responsiveness[J]. Current Diabetes Reviews, 2016, 12(1): 30-41. |
| [6] | Liu Q, Zhou Q, He Y F, et al. Predicting the 2-year risk of progression from prediabetes to diabetes using machine learning among Chinese elderly adults[J]. Journal of Personalized Medicine, 2022, 12(7): 1055. |
| [7] | Tabák A G, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for diabetes development[J]. The Lancet, 2012, 379(9833): 2279-2290. |
| [8] | Brannick B, Wynn A, Dagogo-Jack S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications[J]. Experimental Biology and Medicine, 2016, 241(12): 1323-1331. |
| [9] | Cai X Y, Zhang Y L, Li M J, et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis[J]. BMJ, 2020, 370: m2297. |
| [10] | Mutie P M, Pomares-Millan H, Atabaki-Pasdar N, et al. An investigation of causal relationships between prediabetes and vascular complications[J]. Nature Communications, 2020, 11: 4592. |
| [11] | Cosic V, Jakab J, Pravecek M K, et al. The importance of prediabetes screening in the prevention of cardiovascular disease[J]. Medical Archives, 2023, 77(2): 97-104. |
| [12] | Tobore I, Kandwal A, Li J Z, et al. Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach[J]. Knowledge-Based Systems, 2020, 209: 106464. |
| [13] | Wang L Y, Mu Y, Zhao J, et al. IGRNet: a deep learning model for non-invasive, real-time diagnosis of prediabetes through electrocardiograms[J]. Sensors, 2020, 20(9): 2556. |
| [14] | Lin Y C, Lin C S, Chang T S, et al. Early sensory neurophysiological changes in prediabetes[J]. Journal of Diabetes Investigation, 2020, 11(2): 458-465. |
| [15] | Oliveira C M, Ghezzi A C, Cambri L T. Higher blood glucose impairs cardiac autonomic modulation in fasting and after carbohydrate overload in adults[J]. Applied Physiology, Nutrition, and Metabolism, 2021, 46(3): 221-228. |
| [16] | Coopmans C, Zhou T L, Henry R M A, et al. Both prediabetes and type 2 diabetes are associated with lower heart rate variability: the maastricht study[J]. Diabetes Care, 2020, 43(5): 1126-1133. |
| [17] | Rajendra A U, Paul J K, Kannathal N, et al. Heart rate variability: a review[J]. Medical and Biological Engineering and Computing, 2006, 44(12): 1031-1051. |
| [18] | Vijay C, Darshan M, Vishnu R. Cardiac autonomic dysfunction and ECG abnormalities in patients with type 2 diabetes mellitus—a comparative cross-sectional study[J]. National Journal of Physiology, Pharmacy and Pharmacology, 2016, 6(3): 178. |
| [19] | Igbe T, Li J Z, Kandwal A, et al. An absolute magnitude deviation of HRV for the prediction of prediabetes with combined artificial neural network and regression tree methods[J]. Artificial Intelligence Review, 2022, 55(3): 2221-2244. |
| [20] | 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)[J].中华糖尿病杂志, 2021, 13(4): 317-411. |
| Chinese Diabetes Society. Type 2 diabetes prevention and treatment comprehensive guide (2020 edition) [J]. Chinese Journal of Diabetes,2021, 13(4): 317-411. | |
| [21] | Cui X R, Tian L R, Li Z W, et al. On the variability of heart rate variability—evidence from prospective study of healthy young college students[J]. Entropy, 2020, 22(11): 1302. |
| [22] | Sassi R, Cerutti S, Lombardi F, et al. Advances in heart rate variability signal analysis: joint position statement by the E-cardiology ESC working group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society[J]. Europace, 2015, 17(9): 1341-1353. |
| [23] | Pan J, Tompkins W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, 32(3): 230-236. |
| [24] | Catai A M, Pastre C M, de Godoy M F, et al. Heart rate variability: are you using it properly? standardisation checklist of procedures[J]. Brazilian Journal of Physical Therapy, 2020, 24(2): 91-102. |
| [25] | Forte G, Favieri F, Casagrande M. Heart rate variability and cognitive function: a systematic review[J]. Frontiers in Neuroscience, 2019, 13: 710. |
| [26] | Jwo D J, Chang W Y, Wu I H. Windowing techniques, the welch method for improvement of power spectrum estimation[J]. Computers, Materials and Continua, 2021, 67(3): 3983-4003. |
| [27] | Jin Y, Duan Y L. Wavelet scattering network-based machine learning for ground penetrating radar imaging: application in pipeline identification[J]. Remote Sensing, 2020, 12(21): 3655. |
| [28] | Mallat S. Group invariant scattering[J]. Communications on Pure and Applied Mathematics, 2012, 65(10): 1331-1398. |
| [29] | Ostroumora L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[C]// Advances in Neural Information Processing Systems. Montreal, 2018: 6639-6649. |
| [30] | Bentéjac C, Csörgő A, Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms[J]. Artificial Intelligence Review, 2021, 54(3): 1937-1967. |
| [31] | Zhang Y X, Zhao Z G, Zheng J H. CatBoost: a new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China[J]. Journal of Hydrology, 2020, 588: 125087. |
| [1] | XU Li-sheng, ZHOU Shu-ran, YAO Yang, QI Lin. Feasibility Analysis on Pulse Rate Variability as an Estimate of Heart Rate Variability [J]. Journal of Northeastern University Natural Science, 2017, 38(1): 31-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||