ZHOU Ping,YOU Lei, LIU Ji-ping, ZHANG Xing. Centre Temperature Estimation of Blast Furnace Cross Temperature Measuring Based on M-SVR and RVFLNs[J]. Journal of Northeastern University:Natural Science, 2017, 38(5): 614-619.
[1]Jian L,Gao C H,Li L,et al.Application of least squares support vector machines to predict the silicon content in blast furnace hot metal [J].ISIJ International,2008,48(11):1659-1661.
[2]Yuan M,Zhou P.Intelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCA [J].Journal of Iron and Steel Research,International,2015,22(6):487-495.
[3]Zhao J,Liu Y,Zhang X P,et al.A MKL based on-line prediction for gasholder level in steel industry [J].Control Engineering Practice,2012,20:629-641.
[4]Zhou P,Yuan M,Wang H,et al.Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections [J].Information Sciences,2015,325(12):237-255.
[5]Tuia D,Verrelst J,Alonso L,et al.Multioutput support vector regression for remote sensing biophysical parameter estimation [J].IEEE Geoscience and Remote Sensing Letters,2011,8(4):804-808.
[6]Sanchez F,Cumplido D P,Arenas G,et al.SVM multiregression for non linear channel estimation in multiple-input multiple-output systems [J].IEEE Transactions on Signal Processing,2004,52(8):2298-2307.
[7]Pao Y H,Takefuji Y.Functional-link net computing:theory,system architecture,and functionalities [J].Computer,1992,25(5):76-79.
[8]Han H G,Wang L D,Qiao J F.Hierarchical extreme learning machine for feedforward neural network [J].Neurocomputing,2014,128(5):128-135.
[9]Schmidt W F,Kraaijveld M,Duin R P W.Feedforward neural networks with random weights [C]//1992 Pattern Recognition Conference B:Pattern Recognition Methodology and Systems.Cydney,1992:1-4.
[10]Martens H,Martens M.Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression [J].Food Quality & Preference,2000,99(11):5-16.
[11]Saracoglu I,Topaloglu S,Keskinturk T.A genetic algorithm approach for multi-product multi-period continuous review inventory models [J].Expert Systems with Applications,2014,41(18):8189-8202.
[12]Gao X X,Yang H X,Lin L,et al.Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore [J].Journal of Wind Engineering and Industrial Aerodynamics,2015,139:89-99.(上接第613页)取表征过程内在特征的少数主要变量,因此PCA和ICA广泛应用于线性工业流程的过程监测.基于核函数的KPCA和KICA通过非线性映射,巧妙地将一个非线性问题转化为线性问题,因此被广泛应用于非线性过程监测中.2) 上述算法均有自身的适用条件,如果在监测过程中不考虑工业过程的数据特性,盲目选择监测算法,则可能给出错误结论.3) 本文提出的基于数据特性分析的方法,对于先验知识未知的过程,检验过程数据的相关特性,并根据检验结果及各监测算法的适用条件自动选择合适的监测算法,从而有效解决了各方法对过程数据的限制问题,提高了监测性能.4) 仿真验证了该方法选择的监测算法效果良好,进一步证明了该方法可行有效.