Model Parameter Online Identification Based SOC Estimation Method
LIU Fang1, MA Jie1, SU Wei-xing1,2, HE Mao-wei1
1. School of Computer Science and Technology, Tiangong University, Tianjin 300387, China; 2. State Key Laboratory of Process Automation in Mining & Metallurgy, Beijing 100160, China.
LIU Fang, MA Jie, SU Wei-xing, HE Mao-wei. Model Parameter Online Identification Based SOC Estimation Method[J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1543-1549.
[1]Zhou Z K,Duan B,Kang Y Z,et al.A low-complexity state of charge estimation method for series-connected lithium-ion battery pack used in electric vehicles[J].Journal of Power Sources,2019,441:226972. [2]Chemali E,Kollmeyer P,Preindl M,et al.Long short-term memory-networks for accurate state of charge estimation of Li-ion batteries[J].IEEE Transactions on Industrial Electronics,2018,65(8):6730-6739. [3]于海芳,逯仁贵,朱春波,等.基于安时法的镍氢电池SOC估计误差校正[J].电工技术学报,2012,27(6):12-18.(Yu Hai-fang,Lu Ren-gui,Zhu Chun-bo,et al.State of charge estimation error calibration for Ni-H battery based on ampere-hour method[J].Transactions of China Electrotechnical Society,2012,27(6):12-18.) [4]Xiong R,Cao J,Yu Q,et al.Critical review on the battery state of charge estimation methods for electric vehicles[J].IEEE Access,2018,6:1832-1843. [5]Zhu Q,Xu M G,Liu W Q.A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended Kalman filter[J].Energy,2019,187: 115880. [6]Wang W H,Mu J Y.State of charge estimation for lithium-ion battery in electric vehicle based on Kalman filter considering model error[J].IEEE Access,2019,7:29223-29235. [7]Xie S B,Hu X S,Xin Z K,Time-efficient stochastic model predictive energy management for a plug-in hybrid electric bus with an adaptive reference state-of-charge advisory[J].IEEE Transactions on Vehicular Technology,2018,67(7):5671-5682. [8]Wei,Z B,Leng F,He Z J.Online state of charge and state of health estimation for a lithium-ion battery based on a data-model fusion method[J].Energies,2018,11(7):1810. [9]Wang T P,Chen S Z,Ren H B.Model-based unscented Kalman filter observer design for lithium-ion battery state of charge estimation[J].International Journal of Energy Research,2018,42(4):1603-1614. [10]Feng T H,Yang L,Zhao X W,et al.Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state of power prediction[J].Journal of Power Sources,2015,281:192-203. [11]Chen L,Wang Z Z,Lu Z Q.A novel state-of-charge estimation method of lithium-ion batteries combining the grey model and genetic algorithms[J].IEEE Transactions on Power Electronics,2018,33(10):8797-8807. [12]Zhang L,Hu X S,Wang Z P.Fractional-order modeling and state-of-charge estimation for ultra capacitors[J].Journal of Power Sources,2016,314:28-34. [13]Xiao R X,Shen J W,Li X Y.Comparisons of modeling and state of charge estimation for lithium-ion battery based on fractional order and integral order methods[J].Energies,2016,9(3):184. [14]He H W,Xiong R,Fan J X.Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J].Energies,2011,4(4):582-598. [15]Gao W,Jiang M,Hou Y.Research on PNGV model parameter identification of LiFePO4 Li-ion battery based on FMRLS[C]//Industrial Electronics and Applications.Beijing,2011:2294-2297. [16]Haupt R L.An introduction to genetic algorithms for electromagnetics[J].IEEE Antennas and Propagation Magazine,1995,37(2):7-15. [17]陈小平,于盛林.实数遗传算法交叉策略的改进[J].电子学报,2003,31(1):37-40.(Chen Xiao-ping,Yu Sheng-lin.Improvement on crossover strategy of real-valued genetic algorithm[J].Acta Electronica Sinica,2003,31(1):37-40.) [18]He Y,Liu X T,Zhang C B,et al.A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries[J].Applied Energy,2013,101(1):808-814. [19]Wang D,Wang X,Xiang C,et al.Unscented Kalman filter-based battery SOC estimation and peak power prediction method for power distribution of hybrid electric vehicles[J].IEEE Access,2018,6:35957-35965. [15]关守平,房少纯.一种新型的区间-粒子群优化算法[J].东北大学学报(自然科学版),2012,33(10):1381-1384.(Guan Shou-ping,Fang Shao-chun.A new interval particle swarm optimization algorithm[J].Journal of Northeastern University(Natural Science),2012,33(10):1381-1384.)