YUAN Jie, WANG Shu, WANG Fu-li, SUN Xiao-hui. Abnormal Condition Recognition Based on Improved Subjective Bayesian Method for Fused Magnesium Furnace[J]. Journal of Northeastern University(Natural Science), 2021, 42(2): 153-159.
[1]Wu Z W, Liu T F, Jiang Z P,et al.Nonlinear control tools for fused magnesium furnaces: design and implementation[J].IEEE Transactions on Industrial Electronics,2018, 65 (9):7248-7257. [2]李荟,王福利,李鸿儒.电熔镁炉熔炼过程异常工况识别及自愈控制方法[J].自动化学报,2020,46(7): 1411-1419.(Li Hui, Wang Fu-li, Li Hong-ru.Abnormal condition identification and self-healing control scheme for the electro-fused magnesia smelting process[J].Acta Automatica Sinica,2020, 46(7):1411-1419.) [3]Ding S Y, Wang Z J, Kong W J,et al.Electrode regulating system modeling in electrical smelting furnace using recurrent neural network with attention mechanism[J].Neurocomputing,2019, 359:32-40. [4]卢绍文,王克栋,吴志伟, 等.基于深度卷积网络的电熔镁炉欠烧工况在线识别[J].控制与决策, 2019, 34(7):1537-1544.(Lu Shao-wen, Wang Ke-dong, Wu Zhi-wei,et al.Online detection of semi-molten of fused magnesium furnace based on deep convolutional neural network[J].Control and Decision,2019, 34(7):1537-1544.) [5]吴高昌,刘强,柴天佑,等.基于时序图像深度学习的电熔镁炉异常工况诊断[J].自动化学报, 2019, 45(8):1475-1485.(Wu Gao-chang, Liu Qiang, Chai Tian-you,et al.Abnormal condition diagnosis through deep learning of image sequences for fused magnesium furnaces[J].Acta Automatica Sinica,2019, 45(8):1475-1485.) [6]李鸿儒, 王奕文,邓靖川.基于信息融合的电熔镁炉熔炼异常工况等级识别[J].东北大学学报(自然科学版), 2020, 41(2):153-157.(Li Hong-ru, Wang Yi-wen, Deng Jing-chuan.Information fusion based abnormal condition levels recognition of smelting in fused magnesium furnace[J].Journal of Northeastern University(Natural Science),2020, 41(2):153-157.) [7]Coulibaly L, Kamsu-Foguem B, Tangara F.Rule-based machine learning for knowledge discovering in weather data[J].Future Generation Computer Systems,2020, 108: 861-878. [8]Vera J C D, Ortiz G M N, Molina C,et al.Extending knowledge based redundancy in association rules with imprecise knowledge[J].IEEE Latin America Transactions,2019, 17(4):648-653. [9]Xie T, Gong Z T.A hesitant soft fuzzy rough set and its applications[J].IEEE Access, 2019, 7: 167766-167783. [10]Zhao G Z, Chen A G, Lu G X,et al.Data fusion algorithm based on fuzzy sets and D-S theory of evidence[J].Tsinghua Science and Technology,2020, 25(1):12-19. [11]Li L, Yue W C.Dynamic uncertain causality graph based on intuitionistic fuzzy sets and its application to root cause analysis[J].Applied Intelligence,2020, 50(1):241-255. [12]Gnen M, Johnson W O, Lu Y G,et al.Comparing objective and subjective Bayes factors for the two-sample comparison: the classification theorem in action[J].The American Statistician,2019, 73(1):22-31. [13]Uzunolu B.An adaptive Bayesian approach with subjective logic reliability networks for preventive maintenance[J].IEEE Transactions on Reliability,2020, 69(3):916-924.中文.(英文)