REN Zhao-hui, YU Tian-zhuang, DING Dong, ZHOU Shi-hua. Fault Diagnosis Method of Rolling Bearing Based on VMD-DBN[J]. Journal of Northeastern University(Natural Science), 2021, 42(8): 1105-1110.
[1]Rai A,Upadhyay S H.A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J].Tribology International,2016,96:289-306. [2]徐林,郑晓彤,付博,等.基于改进GAN算法的电机轴承故障诊断方法[J].东北大学学报(自然科学版),2019,40(12):1679-1684.(Xu Lin,Zheng Xiao-tong,Fu Bo,et al.Fault diagnosis method of motor bearing based on improved GAN algorithm[J].Journal of Northeastern University (Natural Science),2019,40(12):1679-1684.) [3]Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J/OL].Proceedings of the Royal Society A,1998,454(1971)[2020-09-13].https://doi.org/10.1098/rspa.1998.0193. [4]Li Z T,Li H.EMD and envelope spectrum based bearing fault detection[J].Advanced Materials Research,2012,459:233-237. [5]Wen C,Zhou C D.Rolling bearing fault feature extraction based on SVD-EEMD[J].Applied Mechanics and Materials,2013,411/412/413/414:1067-1071. [6]Ge J H,Niu T Y,Xu D,et al.A rolling bearing fault diagnosis method based on EEMD-WSST signal reconstruction and multi-scale entropy[J].Entropy,2020,22(3):290-317. [7]Dragomiretskiy K,Zosso D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544. [8]Ding J K,Xiao D M,Li X J.Gear fault diagnosis based on genetic mutation particle swarm optimization VMD and probabilistic neural network algorithm[J].IEEE Access,2017,8:18456-18474. [9]An X,Pan L.Bearing fault diagnosis of a wind turbine based on variational mode decomposition and permutation entropy[J/OL].Journal of Risk and Reliability,2017,231(2)[2020-09-05].https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1177%2F1748006X17693492. [10]Li H,Fan B,Jia R,et al.Research on multi-domain fault diagnosis of gearbox of wind turbine based on adaptive variational mode decomposition and extreme learning machine algorithms[J].Energies,2020,13(6):1375-1395. [11]吴守军,冯辅周,吴春志,等.基于VMD-DE的坦克行星变速箱故障诊断方法研究[J].振动与冲击,2020,39(10):170-179.(Wu Shou-jun,Feng Fu-zhou,Wu Chun-zhi,et al.Research on fault diagnosis method of tank planetary gearbox on VMD-DE[J].Journal of Vibration and Shock,2020,39(10):170-179.) [12]Hinton G,Osindero S,Teh Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [13]赵光权,葛强强,刘小勇,等.基于DBN的故障特征提取及诊断方法研究[J].仪器仪表学报,2016,37(9):1946-1953.(Zhao Guang-quan,Ge Qiang-qiang,Liu Xiao-yong,et al.Fault feature extraction and diagnosis method based on deep belief network[J].Chinese Journal of Scientific Instrument,2016,37(9):1946-1953.) [14]Yu X,Ren X H,Wan H,et al.Rolling bearing fault feature extraction and diagnosis method based on MODWPT and DBN[C/OL]//International Conference on Wireless Communications and Signal Processing.Xi’an,2019[2020-09-06].https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FWCSP.2019.8927859. [15]李益兵,王磊,江丽.基于PSO改进深度置信网络的滚动轴承故障诊断[J].振动与冲击,2020,39(5):89-96.(Li Yi-bing,Wang Lei,Jiang Li.Rolling bearing fault diagnosis based on DBN algorithm improved with PSO[J].Journal of Vibration and Shock,2020,39(5):89-96.) [16]张鑫,郭顺生,李益兵,等.基于拉普拉斯特征映射和深度置信网络的半监督故障识别[J].机械工程学报,2020,56(1):69-81.(Zhang Xin,Guo Shun-sheng,Li Yi-bing,et al.Semi-supervised fault identification based on Laplacian eigen map and deep belief networks[J].Journal of Mechanical Engineering,2020,56(1):69-81.) [17]Xu F,Fang Y J,Wang D,et al.Combining DBN and FCM for fault diagnosis of roller element bearings without using data labels[J/OL].Shock and Vibration,2018[2020-09-08].https://www.x-mol.com/paperRedirect/13092689884 61813760. [18]Gai J B,Shen J X,Wang H,et al.A parameter-optimized DBN using GOA and its application in fault diagnosis of gearbox[J/OL].Shock and Vibration,2020[2020-09-08].https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1155%2F2020%2F4294095.