[1]谭伟,杨新俊,周新.超声冲击改善奥氏体不锈钢表面状态的数值分析[J].化工装备技术,2017,38(4):20-27.(Tan Wei,Yang Xin-jun,Zhou Xin.Numerical analysis of ultrasonic impact treatment to improve the surface state of austenitic stainless steel S30408[J].Chemical Equipment Technology,2017,38(4):20-27.) [2]Zhao X S,Zhao D X,Hu W J,et al.Manufacturing of high-precision surface micro-structures on stainless steel by ultrasonic impact peening[J].The International Journal of Advanced Manufacturing Technology,2021,116: 915-930. [3]马腾,宋晓云,叶文君,等.超声冲击处理对TA15钛合金板材焊缝残余应力的影响[J].钛工业进展,2017,34(1):26-28.(Ma Teng,Song Xiao-yun,Ye Wen-jun,et al.Effect of ultrasonic impact treatment on the distribution of residual stress in welds of TA15 titanium alloy sheet[J].Titanium Industry Progress,2017,34(1):26-28.) [4]Yildirim H C,Marquis G B,Barsoum Z.Fatigue assessment of high frequency mechanical impact(HFMI)-improved fillet welds by local approaches[J].International Journal of Fatigue,2013,52(1):57-67. [5]Ye H,Ye K,Guo B G,et al.Effects of combining ultrasonic micro-forging treatment with laser metal wire deposition on micro-structural and mechanical properties in Ti-6Al-4V alloy[J].Materials Characterization,2020,162:110187. [6]Korzynski M.Modeling and experimental validation of the force surface roughness relation for smoothing burnishing with a spherical tool[J].International Journal of Machine Tools & Manufacture,2007,47(12/13):1956-1964. [7]Zhang M,Deng J,Liu Z,et al.Investigation into contributions of static and dynamic loads to compressive residual stress fields caused by ultrasonic surface rolling[J].International Journal of Mechanical Sciences,2019,163:105114. [8]Okawa T,Shimanuki H,Funatsu Y,et al.Effect of preload and stress ratio on fatigue strength of welded joints improved by ultrasonic impact treatment[J].Welding in the World,2013,57(2):235-241. [9]Trudel E,Walker P,Nosir S,et al.Experimental optimization for fatigue life maximization of additively manufactured Ti-6Al-4V alloy employing ultrasonic impact treatment[J].Journal of Materials Engineering and Performance,2021,30(4):2806-2821. [10]武永,邓威,刘恺,等.层间超声冲击对TIG电弧增材制造2219铝合金组织和力学性能的影响[J].航空科学技术,2021,32(11): 80-86.(Wu Yong,Deng Wei,Liu Kai,et al.Effect of interlayer ultrasonic peening on the microstructure and mechanical properties of 2219 aluminum alloy by TIG wire arc additive manufacturing[J].Aeronautical Science and Technology,2021,32(11):80-86.) [11]施宇豪.激光加热辅助条件下的钛合金切削过程分析与建模[D].南京: 南京航空航天大学,2014.(Shi Yu-hao.Analysis and modeling of titanium alloy laser heating assisted milling process[D].Nanjing: Nanjing University of Aeronautics and Astronautics,2014.) [12]Goldak J,Chakravarti A,Bibby M.A new finite-element model for welding heat sources[J].Metallurgical Transactions B,1984,15(2):299-305. [13]Wen S,Shin Y C.Modeling of the off-axis high power diode laser cladding process[J].Journal of Heat Transfer,2011,133(3):031007. [14]Hao M Z,Sun Y W.A FEM model for simulating temperature field in coaxial laser cladding of Ti-6Al-4V alloy using an inverse modeling approach[J].International Journal of Heat and Mass Transfer,2013,64: 352-360. [15]Johnson G R,Cook W H.Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J].Engineering Fracture Mechanics,1985,21(1):31-48. [16]Fu C H,Guo Y B.Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V[J].Journal of Manufacturing Science and Engineering,2014,136(6):061004. [17]Liang W,Murakawa H,Deng D.Investigation of welding residual stress distribution in a thick-plate joint with an emphasis on the features near weld end-start[J].Materials and Design,2015,67: 303-312. [18]赵婧,夏伟,李风雷,等.滚压表面强化机理的研究现状与进展[J].工具技术,2010,44(11):3-8.(Zhao Jing,Xia Wei,Li Feng-lei,et al.Research status and developing tendency of burnishing mechanism[J].Tool Technology,2010,44(11):3-8.)(上接第633页)