Gesture Recognition in the Complex Environment Based on Gan-St-YOLOv5
HAO Bo1,2, YIN Xing-chao1, YAN Jun-wei1, ZHANG Li1,2
1. Key Laboratory of Vibration and Control of Aero-Propulsion System of Ministry of Education, Northeastern University, Shenyang 110819, China; 2. School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
HAO Bo, YIN Xing-chao, YAN Jun-wei, ZHANG Li. Gesture Recognition in the Complex Environment Based on Gan-St-YOLOv5[J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 953-963.
[1]汤寓麟,李厚朴,张卫东,等.侧扫声纳检测沉船目标的轻量化DETR-YOLO法[J/OL].系统工程与电子技术.[2022-04-06].http://kns.cnki.net/kcms/detail/11.2422.TN.20211224.1538.010.html.(Tang Yu-lin,Li Hou-pu,Zhang Wei-dong,et al.A lightweight DETR-YOLO method for detecting shipwreck targets with side-scan sonar[J/OL].Systems Engineering and Electronics.[2022-04-06].http://kns.cnki.net/kcms/detail/11.2422.TN.20211224.1538.010.html.) [2]安珊,林树宽,乔建忠,等.基于生成对抗网络学习被遮挡特征的目标检测方法[J].控制与决策,2021,36(5):1199-1205.(An Shan,Lin Shu-kuan,Qiao Jian-zhong,et al.Object detection method based on generated adversarial network learning obscured feature[J].Control and Decision,2021,36(5):1199-1205.) [3]蔡旻,高涵文,李华一,等.基于CRF和HMM混合模型的手势识别方法[J].计算机应用与软件,2021,38(11):162-166.(Cai Min,Gao Han-wen,Li Hua-yi,et al.Gesture recognition method based on hybrid model CRF and HMM[J].Computer Applications and Software,2021,38(11):162-166.) [4]Tan Y S,Lim K M,Tee C,et al.Convolutional neural network with spatial pyramid pooling for hand gesture recognition[J].Neural Computing and Applications,2021,33(10):5339-5351. [5]Sarma D,Bhuyan M K.Hand detection by two-level segmentation with double-tracking and gesture recognition using deep-features[J].Sensing and Imaging,2022,23(1):1-29. [6]Manmode P,Saha R,Amnerkar M N .Real-time hand gesture recognition[J].International Journal of Scientific Research in Computer Science Engineering and Information Technology,2021,35(9):618-624. [7]Yu T,Guo Z,Jin X,et al.Region normalization for image inpainting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Chongqing,2020:12733-12740. [8]Shepley A,Falzon G,Kwan P.Confluence:a robust non-IoU alternative to non-maxima suppression in object detection[J].ArXiv Preprint ArXiv.https://blog.csdn.net/chrisitian666/article/details/111759945. [9]Liu Z,Lin Y,Cao Y,et al.Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal,2021:10012-10022. [10]Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:2011-2023. [11]刘邵凡.基于对抗学习的多域自适应目标检测方法研究[D].合肥:合肥工业大学,2021.(Liu Shao-fan.Multiple domain adaptive target detection based on against learning method research[D].Hefei:Hefei University of Technology,2021.) [12]王德兴,王越,袁红春.基于Inception-Residual和生成对抗网络的水下图像增强[J].液晶与显示,2021,36(11):1474-1485.(Wang De-xing,Wang Yue,Yuan Hong-chun.Underwater image enhancement based on inception-residual and generated antagonistic network[J].Chinese Journal of Liquid Crystals and Displays,201,36(11):1474-1485.) [13]万晓丹.基于对抗网络与卷积神经网络的目标检测方法[J].计算机应用与软件,2021,38(1):192-196.(Wan Xiao-dan.Object detection method based on adversarial network and convolutional neural network[J].Computer Applications and Software,2021,38(1):192-196.) [14]孙强,李一全,于占江,等.Inception-ViT模型的微型铣刀磨损状态预测研究[J].工具技术,2022,56(1):13-21.(Sun Qiang,Li Yi-quan,Yu Zhan-jiang,et al.Research on micro milling cutter wear state prediction based on Inception-ViT model[J].Journal of Tool Technology,202,56(1):13-21.) [15]苏晋鹏.基于超特征金字塔与对抗学习的目标检测算法研究[D].南京:南京邮电大学,2019.(Su Jin-peng.Based on the characteristics of super pyramid and confrontation study target detection algorithm research[D].Nanjing:Nanjing University of Posts and Telecommunications,2019.) [16]任仲乐.基于数据驱动的遥感目标检测与地物分类[D].西安:西安电子科技大学,2020.(Ren Zhong-le.Remote sensing target detection based on data driven and feature classification[D].Xi’an:Xi’an University of Electronic Science and Technology,2020.) [17]杨潇宇,汪西莉.结合多尺度注意力和边缘监督的遥感图像建筑物分割模型[J].激光与光电子学进展,2022,59(22):335-344.(Yang Xiao-yu,Wang Xi-li.Building segmentation model of remote sensing image combining multi-scale attention and edge supervision[J].Laser & Optoelectronics Progress,2022,59(22):335-344.) [18]康健,王智睿,祝若鑫,等.基于监督对比学习正则化的高分辨率SAR图像建筑物提取方法[J].雷达学报,2022,11(1):157-167.(Kang Jian,Wang Zhi-rui,Zhu Ruo-xin,et al.Building extraction method of high resolution SAR image based on supervised contrast learning regularization[J].Chinese Journal of Radar,2022,11(1):157-167.) [19]舒朗.基于强化学习的目标检测算法研究[D].杭州:杭州电子科技大学,2018.(Shu Lang.Research on object detection algorithm based on reinforcement learning[D].Hangzhou:Hangzhou Dianzi University,2018.)