
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (12): 104-115.DOI: 10.12068/j.issn.1005-3026.2025.20240114
• Resources & Civil Engineering • Previous Articles
Lian-chong LI, Yi-teng WANG, Wen-qiang MU, Hong-lei LIU
Received:2024-05-15
Online:2025-12-15
Published:2026-02-09
Contact:
Wen-qiang MU
CLC Number:
Lian-chong LI, Yi-teng WANG, Wen-qiang MU, Hong-lei LIU. Rheological Properties and Diffusion Mechanism of Cement-Based Slurries with Different Water-Cement Ratios[J]. Journal of Northeastern University(Natural Science), 2025, 46(12): 104-115.
PO42.5R 硅酸盐水泥 | 外观形态 | 烧失量 | 水泥细度 | 标准稠度水量/% | 氧化硫质量 分数/% | 初凝时间 | 终凝时间 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| g | mm | min | min | ||||||||
| 浅灰色粉末 | 3.71 | 0.002 5 | 26.6 | 2.44 | 199 | 263 | |||||
S95 矿渣粉 | 外观形态 | 纯度 | 规格型号 | 粒度/μm | 密度/(g·cm-3) | 白度/% | 抗弯强度 | ||||
| % | MPa | ||||||||||
| 浅灰色粉末 | 90 | S95 | 325 | 2.3 g | 23.8 | 5 | |||||
| 粉煤灰 | 外观形态 | 密度/(g·cm-3) | 导热系数 | 吸声系数 | 抗压强度/MPa | ||||||
| 灰色粉末状 | 2.65 | 3 | 6 | 9 | |||||||
| 氧化石墨烯 | 材料名称 | 外观形态 | 纯度 | 层数 | 厚度 | 片层直径 | 碳质量分数/% | 氧质量分数/% | 硫质量分数/% | 可剥离 单层率/% | 干燥 工艺 |
| % | nm | μm | |||||||||
| 工业级单层氧化石墨烯 | 黑褐色 粉末 | 1~2 | 10~50 | 低温 干燥 | |||||||
| 纳米硅溶胶 | 型号标准 | SiO2质量分数/% | Na2O质量分数/% | 粒径/nm | 密度/(g·cm-3) (20 ℃) | pH | 黏度/(mPa·s) (20 ℃) | ||||
| JN-30 | 30±1 | ≤0.3 | 8~15 | 1.15~1.17 | 9.0~10.0 | ≤10 | |||||
Table 1 Performance parameters of raw material for experiment
PO42.5R 硅酸盐水泥 | 外观形态 | 烧失量 | 水泥细度 | 标准稠度水量/% | 氧化硫质量 分数/% | 初凝时间 | 终凝时间 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| g | mm | min | min | ||||||||
| 浅灰色粉末 | 3.71 | 0.002 5 | 26.6 | 2.44 | 199 | 263 | |||||
S95 矿渣粉 | 外观形态 | 纯度 | 规格型号 | 粒度/μm | 密度/(g·cm-3) | 白度/% | 抗弯强度 | ||||
| % | MPa | ||||||||||
| 浅灰色粉末 | 90 | S95 | 325 | 2.3 g | 23.8 | 5 | |||||
| 粉煤灰 | 外观形态 | 密度/(g·cm-3) | 导热系数 | 吸声系数 | 抗压强度/MPa | ||||||
| 灰色粉末状 | 2.65 | 3 | 6 | 9 | |||||||
| 氧化石墨烯 | 材料名称 | 外观形态 | 纯度 | 层数 | 厚度 | 片层直径 | 碳质量分数/% | 氧质量分数/% | 硫质量分数/% | 可剥离 单层率/% | 干燥 工艺 |
| % | nm | μm | |||||||||
| 工业级单层氧化石墨烯 | 黑褐色 粉末 | 1~2 | 10~50 | 低温 干燥 | |||||||
| 纳米硅溶胶 | 型号标准 | SiO2质量分数/% | Na2O质量分数/% | 粒径/nm | 密度/(g·cm-3) (20 ℃) | pH | 黏度/(mPa·s) (20 ℃) | ||||
| JN-30 | 30±1 | ≤0.3 | 8~15 | 1.15~1.17 | 9.0~10.0 | ≤10 | |||||
| 复合体系 | 水灰比 | η0/(mPa·s) | ka | kb | 拟合优度R2 |
|---|---|---|---|---|---|
| SF | 0.8 | 427.296 72 | 59.508 70 | 0.044 58 | 0.992 75 |
| 1.0 | 126.453 17 | 48.292 98 | 0.025 26 | 0.990 24 | |
| 1.2 | 119.024 67 | 41.574 14 | 0.034 01 | 0.994 11 | |
| 1.4 | 108.891 45 | 39.289 15 | 0.023 63 | 0.975 05 | |
| 1.6 | 98.880 28 | 32.258 44 | 0.020 93 | 0.993 15 | |
| GO | 0.8 | 307.336 46 | 42.987 24 | 0.048 42 | 0.996 73 |
| 1.0 | 114.169 16 | 40.866 73 | 0.036 40 | 0.996 92 | |
| 1.2 | 113.485 38 | 21.885 44 | 0.028 63 | 0.962 95 | |
| 1.4 | 95.473 79 | 19.289 15 | 0.024 86 | 0.994 98 | |
| 1.6 | 80.081 87 | 25.264 75 | 0.018 47 | 0.974 69 | |
| NS | 0.8 | 239.998 83 | 55.031 83 | 0.061 91 | 0.985 94 |
| 1.0 | 162.512 73 | 49.072 06 | 0.044 89 | 0.995 04 | |
| 1.2 | 121.936 01 | 35.158 25 | 0.052 74 | 0.987 20 | |
| 1.4 | 93.861 27 | 23.713 38 | 0.044 63 | 0.997 48 | |
| 1.6 | 76.625 62 | 21.679 18 | 0.039 72 | 0.988 41 |
Table 2 Function fitting results for time-dependent viscosity
| 复合体系 | 水灰比 | η0/(mPa·s) | ka | kb | 拟合优度R2 |
|---|---|---|---|---|---|
| SF | 0.8 | 427.296 72 | 59.508 70 | 0.044 58 | 0.992 75 |
| 1.0 | 126.453 17 | 48.292 98 | 0.025 26 | 0.990 24 | |
| 1.2 | 119.024 67 | 41.574 14 | 0.034 01 | 0.994 11 | |
| 1.4 | 108.891 45 | 39.289 15 | 0.023 63 | 0.975 05 | |
| 1.6 | 98.880 28 | 32.258 44 | 0.020 93 | 0.993 15 | |
| GO | 0.8 | 307.336 46 | 42.987 24 | 0.048 42 | 0.996 73 |
| 1.0 | 114.169 16 | 40.866 73 | 0.036 40 | 0.996 92 | |
| 1.2 | 113.485 38 | 21.885 44 | 0.028 63 | 0.962 95 | |
| 1.4 | 95.473 79 | 19.289 15 | 0.024 86 | 0.994 98 | |
| 1.6 | 80.081 87 | 25.264 75 | 0.018 47 | 0.974 69 | |
| NS | 0.8 | 239.998 83 | 55.031 83 | 0.061 91 | 0.985 94 |
| 1.0 | 162.512 73 | 49.072 06 | 0.044 89 | 0.995 04 | |
| 1.2 | 121.936 01 | 35.158 25 | 0.052 74 | 0.987 20 | |
| 1.4 | 93.861 27 | 23.713 38 | 0.044 63 | 0.997 48 | |
| 1.6 | 76.625 62 | 21.679 18 | 0.039 72 | 0.988 41 |
| 复合体系 | 水灰比 | 黏度时变函数 |
|---|---|---|
| SF | 0.8 | |
| 1.0 | ||
| 1.2 | ||
| 1.4 | ||
| 1.6 | ||
| GO | 0.8 | |
| 1.0 | ||
| 1.2 | ||
| 1.4 | ||
| 1.6 | ||
| NS | 0.8 | |
| 1.0 | ||
| 1.2 | ||
| 1.4 | ||
| 1.6 |
Table 3 Viscosity function expressions
| 复合体系 | 水灰比 | 黏度时变函数 |
|---|---|---|
| SF | 0.8 | |
| 1.0 | ||
| 1.2 | ||
| 1.4 | ||
| 1.6 | ||
| GO | 0.8 | |
| 1.0 | ||
| 1.2 | ||
| 1.4 | ||
| 1.6 | ||
| NS | 0.8 | |
| 1.0 | ||
| 1.2 | ||
| 1.4 | ||
| 1.6 |
| 扩散距离/cm | 距离等分数量n | 方向角等分数量m | 注浆孔径/cm | q/(L·s-1) | 平均隙宽bave/cm | p0/kPa |
|---|---|---|---|---|---|---|
| 100 | 1 000 | 4 | 2 | 0.2 | 0.2 | 0 |
Table 4 Main calculation parameters
| 扩散距离/cm | 距离等分数量n | 方向角等分数量m | 注浆孔径/cm | q/(L·s-1) | 平均隙宽bave/cm | p0/kPa |
|---|---|---|---|---|---|---|
| 100 | 1 000 | 4 | 2 | 0.2 | 0.2 | 0 |
| [1] | 刘红彬, 唐伟奇, 肖凯璐, 等. 水泥基注浆材料的研究进展[J]. 混凝土, 2016(3): 71-75. |
| Liu Hong-bin, Tang Wei-qi, Xiao Kai-lu, et al. Research progress of cement-based grouting materials[J]. Concrete, 2016(3): 71-75. | |
| [2] | da Rocha G S, Ferrara L, Sánchez L, et al. A comprehensive review of cementitious grouts: composition, properties, requirements and advanced performance[J]. Construction and Building Materials, 2023, 375: 130991. |
| [3] | Sajwan K S, Twardowska I, Punshon T, et al. Coal combustion by-products and environmental issues[M].New York: Springer,2006. |
| [4] | 胡少银, 刘泉声, 李世辉, 等. 裂隙岩体注浆理论研究进展及展望[J]. 煤炭科学技术, 2022, 50(1): 112-126. |
| Hu Shao-yin, Liu Quan-sheng, Li Shi-hui, et al. Advance and review on grouting critical problems in fractured rock mass[J]. Coal Science and Technology, 2022, 50(1): 112-126. | |
| [5] | 李颖, 吴保华, 倪文, 等. 矿渣-钢渣-石膏体系早期水化反应中的协同作用[J]. 东北大学学报(自然科学版), 2020, 41(4): 581-586. |
| Li Ying, Wu Bao-hua, Ni Wen, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system[J]. Journal of Northeastern University(Natural Science), 2020, 41(4): 581-586. | |
| [6] | Zhang S, Qiao W G, Chen P C, et al. Rheological and mechanical properties of microfine-cement-based grouts mixed with microfine fly ash, colloidal nanosilica and superplasticizer[J]. Construction and Building Materials, 2019, 212: 10-18. |
| [7] | Lu C, Lu Z Y, Li Z J, et al. Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites[J]. Construction and Building Materials,2016,120: 457-464. |
| [8] | Gao Y, Jing H W, Fu G P,et al. Studies on combined effects of graphene oxide-fly ash hybrid on the workability,mechanical performance and pore structures of cementitious grouting under high W/C ratio[J]. Construction and Building Materials,2021,281:122578. |
| [9] | Ling X Z, Guo X Y, Zhong J, et al. Investigation of the effect of graphene oxide on the properties and microstructure of clay-cement composite grouting materials[J]. Materials, 2022, 15(5):1623. |
| [10] | Zhao X G, Yang Z Q, Meng X R, et al. Study on mechanism and verification of columnar penetration grouting of time-varying Newtonian fluids[J]. Processes, 2023, 11(4):1151. |
| [11] | 阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报, 2005, 27(1):69-73. |
| Ruan Wen-jun. Research on diffusion of grouting and basic properties of grouts[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1):69-73. | |
| [12] | Zhang Q S, Zhang L Z, Liu R T, et al. Grouting mechanism of quick setting slurry in rock fissure with consideration of viscosity variation with space[J]. Tunnelling and Underground Space Technology, 2017, 70 :262-273. |
| [13] | Xie L Z, Gao C, Ren L, et al. Numerical investigation of geometrical and hydraulic properties in a single rock fracture during shear displacement with the Navier-Stokes equations[J]. Environmental Earth Sciences, 2015, 73(11): 7061-7074. |
| [14] | Hao M M, Wang F M, Li X L, et al. Numerical and experimental studies of diffusion law of grouting with expansible polymer[J]. Journal of Materials in Civil Engineering, 2018, 30(2): 04017290. |
| [15] | Crandall D, Bromhal G, Karpyn Z T. Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(5): 784-796. |
| [16] | Mu W Q, Li L C, Yang T H, et al. Numerical calculation and multi-factor analysis of slurry diffusion in an inclined geological fracture[J]. Hydrogeology Journal, 2020, 28(3): 1107-1124. |
| [17] | Chi M C, Liu Y C. Effects of fly ash/slag ratio and liquid/binder ratio on strength of alkali-activated fly ash/slag mortars[J]. Applied Mechanics and Materials, 2013, 377: 50-54. |
| [18] | 高远, 靖洪文, 喻梓轩, 等.氧化石墨烯和水泥基复合注浆材料胶结碎石的力学性能试验研究[J].岩石力学与工程学报, 2022, 41(9): 1898-1909. |
| Gao Yuan, Jing Hong-wen, Yu Zi-xuan, et al. Experimental study on the mechanical properties of crushed stone cemented by graphene oxide and cement-based composite grouting materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1898-1909. | |
| [19] | Barbhuiya G H, Moiz M A, Hasan S D, et al. Effects of the nanosilica addition on cement concrete: a review[J]. Materials Today: Proceedings, 2020, 32: 560-566. |
| [20] | von Bronk T, Haist M, Lohaus L. The influence of bleeding of cement suspensions on their rheological properties[J]. Materials, 2020, 13(7): 1609. |
| [21] | 孙晓明, 陈峰, 梁广峰, 等. 防膨胀软岩注浆材料试验及应用研究[J].岩石力学与工程学报, 2017, 36(2): 457-465. |
| Sun Xiao-ming, Chen Feng, Liang Guang-feng, et al. Experimental and application research on grouting material for preventing swelling of soft rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 457-465. | |
| [22] | 温震江, 高谦, 王永定, 等. 不同浓度料浆流变特性与混合骨料级配相关性试验[J]. 东北大学学报(自然科学版), 2020, 41(5): 642-648. |
| Wen Zhen-jiang, Gao Qian, Wang Yong-ding, et al. Experiment on correlation between rheological properties of filling slurry with different mass concentration and mixed aggregate gradation [J]. Journal of Northeastern University (Natural Science), 2020, 41(5): 642-648. | |
| [23] | El-Hassan H, Shehab E, Al-Sallamin A. Effect of curing regime on the performance and microstructure characteristics of alkali-activated slag-fly ash blended concrete[J]. Journal of Sustainable Cement-Based Materials, 2021, 10(5): 289-317. |
| [24] | Shang Y, Zhang D, Yang C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction and Building Materials, 2015, 96: 20-28. |
| [25] | 章敏, 王星华, 汪优. Herschel-Bulkley浆液在裂隙中的扩散规律研究[J]. 岩土工程学报, 2011, 33(5): 815-820. |
| Zhang Min, Wang Xing-hua, Wang You. Diffusion of Herschel-Bulkley slurry in fractures[J]. Chinese Journal of Geotechnical Engineering, 2011,33(5): 815-820. | |
| [26] | 牟文强. 裂隙岩体劈裂注浆浆液扩散流固耦合机理研究[D]. 沈阳:东北大学, 2021. |
| Mu Wen-qiang. Study on fluid-solid coupling mechanism of split grouting slurry diffusion in fractured rock mass [D]. Shenyang: Northeastern University, 2021. |
| [1] | RUAN Yun-kai, CHEN Jian-ping, CAO Cen, YAN Huan. Application of K-S Test in Structural Homogeneity Dividing of Fractured Rock Mass [J]. Journal of Northeastern University:Natural Science, 2015, 36(10): 1471-1475. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||