| [1] |
鄢然, 王帅安, 周煜圣. 区块链技术在航运业的应用综述[J]. 交通运输工程与信息学报, 2022, 20(3): 1-14.
|
|
Yan Ran, Wang Shuai-an, Zhou Yu-sheng. Application of blockchain technology in the shipping industry[J]. Journal of Transportation Engineering and Information, 2022, 20(3):1-14.
|
| [2] |
周旗开, 张伟, 李东锦, 等. 基于改进YOLOv5s的光学遥感图像舰船分类检测方法[J]. 激光与光电子学进展, 2022, 59(16): 1628008.
|
|
Zhou Qi-kai, Zhang Wei, Li Dong-jin, et al. Ship detection and classification method for optical remote sensing images based on improved YOLOv5s[J]. Laser& Optoelectronics Progress, 2022, 59(16): 1628008.
|
| [3] |
Li Y D, Zhang S S, Wang W Q. A lightweight faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4006105.
|
| [4] |
Jiang Z K, Su L, Sun Y X. YOLOv7-ship: a lightweight algorithm for ship object detection in complex marine environments[J]. Journal of Marine Science and Engineering, 2024, 12(1): 179-190.
|
| [5] |
Zhao Q C, Wu Y Q, Yuan Y B. Ship target detection in optical remote sensing images based on E2YOLOX-VFL[J]. Remote Sensing, 2024, 16(2): 318-340.
|
| [6] |
Lyu Z L, Wang C Y, Sun X J, et al. Real-time ship detection system for wave glider based on YOLOv5s-lite-CBAM model[J]. Applied Ocean Research, 2024, 144: 103833.
|
| [7] |
Zhao K, Liu R T, Wang S Y, et al. ST-YOLOA: a Swin-Transformer-based YOLO model with an attention mechanism for SAR ship detection under complex background[J]. Frontiers in Neurorobotics, 2023, 17: 1170163.
|
| [8] |
Jocher G, Chaurasia A, Qiu J. Ultralytics YOLO (version 8.1.9) [EB/OL]. (2023-01-10) [2024-02-24]. .
|
| [9] |
Wang W H, Dai J F, Chen Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 14408-14419.
|
| [10] |
Kang M, Ting C M, Ting F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057-105096.
|
| [11] |
Yang L X, Zhang R Y, Li L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning. Online: PMLR, 2021: 11863-11874.
|
| [12] |
Zhu X Z, Hu H, Lin S, et al. Deformable ConvNetsv2: more deformable, better results[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019: 9300-9308.
|
| [13] |
Lee J, Park S, Mo S, et al. Layer-adaptive sparsity for the magnitude-based pruning[EB/OL]. (2021-05-09)[2024-02-26]. .
|
| [14] |
Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient ConvNets[EB/OL]. (2017-03-17)[2024-02-26]. .
|
| [15] |
Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 1314-1324.
|
| [16] |
Blalock D, Ortiz J J G, Frankle J, et al. What is the state of neural network pruning?[EB/OL]. (2020-03-06)[2024-02-26]. .
|
| [17] |
Molchanov P, Tyree S, Karras T, et al. Pruning convolutional neural networks for resource efficient inference[EB/OL]. (2017-06-08)[2024-02-26]. .
|
| [18] |
Howard A G, Zhu M L, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2024-02-26]. .
|
| [19] |
Wang Q, Liu L, Yu W X, et al. BCKD: block-correlation knowledge distillation[C]//2023 IEEE International Conference on Image Processing (ICIP). Kuala Lumpur: IEEE, 2023: 3225-3229.
|
| [20] |
Shu C Y, Liu Y F, Gao J F, et al. Channel-wise knowledge distillation for dense prediction[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2022: 5291-5300.
|
| [21] |
李斌, 雷钧涵, 郭毅. 基于CCA和Transformer的YOLOv8船舶目标检测算法[J]. 控制工程, 2024, 31(5): 901-911.
|
|
Li Bin, Lei Jun-han, Guo Yi. YOLOv8 ship target detection algorithm based on CCA and Transformer[J]. Control Engineering of China, 2024, 31(5): 901-911.
|
| [22] |
惠卓凡, 李鹏龙, 沈烈, 等. 基于改进YOLOv8的渔港船舶进出港目标检测与统计方法[J]. 大连海洋大学学报, 2024, 39(3): 498-505.
|
|
Hui Zhuo-fan, Li Peng-long, Shen Lie, et al. Detection and statistics method of ship entry and exit in a fishing port based on improved YOLOv8[J]. Journal of Dalian Ocean University, 2024, 39(3):498-505.
|