
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (8): 41-56.DOI: 10.12068/j.issn.1005-3026.2025.20240163
• Overview • Previous Articles Next Articles
Hu-cheng PAN, Sen WANG, Yu-ping REN, Gao-wu QIN
Received:2024-09-05
Online:2025-08-15
Published:2025-11-24
Contact:
Gao-wu QIN
CLC Number:
Hu-cheng PAN, Sen WANG, Yu-ping REN, Gao-wu QIN. Research Progress of Magnesium Alloys Serving in Complex Environments[J]. Journal of Northeastern University(Natural Science), 2025, 46(8): 41-56.
Fig.3 HAADF-STEM(high-angle annular dark field-scanning transmission electron microscope) images of Mg samples exposed at 250 °C for different durations[36]
Fig.8 True stress-strain curves of ZK61 magnesium alloy at strain rates of 1 000~4 000 /s and variation curves of strain hardening rate with strain [68]
| [1] | Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: a review[J]. Journal of Magnesium and Alloys, 2023, 11(10): 3609-3619. |
| [2] | 潘复生,张津,张喜燕,等.轻合金材料新技术[M]. 北京:化学工业出版社,2008: 1-20. |
| Pan Fu-sheng, Zhang Jin, Zhang Xi-yan, et al. New technology of light alloy materials[M]. Beijing:Chemical Industry Press, 2008: 1-20. | |
| [3] | 张春香,陈培磊,陈海军,等.镁合金在汽车工业中的应用及其研究进展[J].铸造技术,2008, 29(4): 531-535. |
| Zhang Chun-xiang, Chen Pei-lei, Chen Hai-jun, et al. Application and research progress of magnesium alloys in automobile industry[J]. Foundry Technology, 2008, 29(4): 531-535. | |
| [4] | Hagihara K, Yokotani N, Kinoshita A, et al. Role of the microstructure on the deformation behavior in Mg12ZnY with a long-period stacking ordered structure[C]//Materials Research Society Symposium. San Francisco. 2009: 553. |
| [5] | Feng X, Guo Q. The lunar surface temperature real-time model[J]. National Remote Sensing Bulletin, 2017, 21(6): 928-938. |
| [6] | 阮莹,胡亮,闫娜,等.空间材料科学研究进展与未来趋势[J].中国科学:技术科学,2020, 50(6): 603-649. |
| Ruan Ying, Hu Liang, Yan Na, et al. Recent advances and future perspectives of space materials science[J]. Scientia Sinica (Technologica), 2020, 50(6): 603-649. | |
| [7] | 周慧敏,黄须强,孔令菲,等.海洋大气环境下镁合金腐蚀行为研究进展[J].稀有金属材料与工程,2024, 53(4): 1170-1180. |
| Zhou Hui-min, Huang Xu-qiang, Kong Ling-fei, et al. Research advances in corrosion behavior of magnesium alloy in marine atmospheric environment[J]. Rare Metal Materials and Engineering, 2024, 53(4): 1170-1180. | |
| [8] | Zhang K, Shao Z T, Daniel C S, et al. A comparative study of plastic deformation mechanisms in room-temperature and cryogenically deformed magnesium alloy AZ31[J]. Materials Science and Engineering: A, 2021, 807: 140821. |
| [9] | Li B, Joshi S, Azevedo K, et al. Dynamic testing at high strain rates of an ultrafine-grained magnesium alloy processed by ECAP [J]. Materials Science and Engineering: A, 2009, 517(1/2): 24-29. |
| [10] | Luo A A. Recent magnesium alloy development for elevated temperature applications [J]. International Materials Reviews, 2004, 49(1): 13-30. |
| [11] | 陈娇,赵超宇,刘冬.耐热镁合金在航空航天工业的应用[J].热加工工艺,2024, 22: 11-14. |
| Chen Jiao, Zhao Chao-Yu, Liu Dong. Application of heat-resistant magnesium alloy in aerospace [J]. Hot working process, 2024, 22: 11-14. | |
| [12] | Yang H, Xie W L, Song J F, et al. Current progress of research on heat-resistant Mg alloys: a review[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(6): 1406-1425. |
| [13] | Bayani H, Saebnoori E. Effect of rare earth elements addition on thermal fatigue behaviors of AZ91 magnesium alloy [J]. Journal of Rare Earths, 2009, 27(2): 255-258. |
| [14] | Mahmudi R, Kabirian F, Nematollahi Z. Microstructural stability and high-temperature mechanical properties of AZ91 and AZ91+2RE magnesium alloys[J]. Materials & Design, 2011, 32(5): 2583-2589. |
| [15] | Zhang W Q, Xiao W L, Wang F, et al. Development of heat resistant Mg-Zn-Al-based magnesium alloys by addition of La and Ca: microstructure and tensile properties[J]. Journal of Alloys and Compounds, 2016, 684: 8-14. |
| [16] | Dong X X, Feng L Y, Wang S H, et al. On the exceptional creep resistance in a die-cast Gd-containing Mg alloy with Al addition[J]. Acta Materialia, 2022, 232: 117957. |
| [17] | Jafari N H R, Wu G H, Liu W C, et al. Effect of Gd content on high temperature mechanical properties of Mg-Gd-Y-Zr alloy[J]. Materials Science and Engineering: A, 2016, 651: 840-847. |
| [18] | Xu W L, Su C, Chen X H, et al. Achieving superior elevated-temperature strength of Mg-12Gd-3Y alloys by Nd addition[J]. Materials Science and Engineering: A, 2023, 867: 144730. |
| [19] | Zhou J X, Luo X J, Yang H, et al. Introducing lamellar LPSO phase to regulate room and high-temperature mechanical properties of Mg-Gd-Y-Zn-Zr alloys by altering cooling rate[J]. Journal of Materials Research and Technology, 2023, 24: 7258-7269. |
| [20] | Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals[J]. Acta Materialia, 2011, 59(5): 1986-1994. |
| [21] | Sim G D, Xie K Y, Hemker K J, et al. Effect of temperature on the transition in deformation modes in Mg single crystals [J]. Acta Materialia, 2019, 178: 241-248. |
| [22] | Liu J N, Zhang X R, Lyu W X, et al. Microstructure and mechanical properties of Mg-2.0Gd-1.2Y-1.0Zn-0.2Zr alloy[J]. Metals and Materials International, 2021, 27(7): 1969-1979. |
| [23] | Wang H, Boehlert C J, Wang Q D, et al. In-situ analysis of the tensile deformation modes and anisotropy of extruded Mg-10Gd-3Y-0.5Zr (wt%) at elevated temperatures[J]. International Journal of Plasticity, 2016, 84: 255-276. |
| [24] | Stanford N, Sotoudeh K, Bate P S. Deformation mechanisms and plastic anisotropy in magnesium alloy AZ31[J]. Acta Materialia, 2011, 59(12): 4866-4874. |
| [25] | Su N, Wu Y J, Deng Q C, et al. Synergic effects of Gd and Y contents on the age-hardening response and elevated-temperature mechanical properties of extruded MgGd(Y) ZnMn alloys[J]. Materials Science and Engineering: A, 2021, 810: 141019. |
| [26] | 束德林.工程材料力学性能[M]. 2版.北京:机械工业出版社, 2007. |
| Shu De-lin. Mechanical properties of engineering materials[M]. 2nd ed. Beijing: China Machine Press, 2007. | |
| [27] | Pekguleryuz M, Celikin M. Creep resistance in magnesium alloys[J]. International Materials Reviews, 2010, 55(4): 197-217. |
| [28] | Pekguleryuz M O, Kaya A A. Creep resistant magnesium alloys for powertrain applications [J]. Advanced Engineering Materials, 2003, 5(12): 866-878. |
| [29] | 徐闻繁.MgGd(YZn) Zr系合金的蠕变性能与微观组织研究[D].上海:上海交通大学,2014. |
| Xu Wen-fan. The creep properties and microstructure of MgGdYZn) Zr alloys [D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
| [30] | Zhu S M, Nie J F, Gibson M A, et al. Microstructure and creep behavior of high-pressure die-cast magnesium alloy AE44 [J]. Metallurgical and Materials Transactions A, 2012, 43(11): 4137-4144. |
| [31] | Zhang Y C, Liu Z, Pang S, et al. Investigation of tensile creep behavior of Mg-Gd-Y-Zr alloy based on creep constitutive model[J]. Materials Science and Engineering: A, 2021, 805: 140567. |
| [32] | Shi Y F, Luo L, Huo Q H, et al. Enhancing creep properties of a hot-rolled Mg-4Y binary alloy via a new thought of inhibiting cross-slip[J]. Materials Characterization, 2019, 147: 64-71. |
| [33] | Luo Y H, Cheng W L, Yu H, et al. Tailoring the microstructural characteristics and enhancing creep properties of as-cast Mg-5Bi-5Sn alloy through Mn addition[J]. Journal of Magnesium and Alloys, 2023, 11(9): 3350-3361. |
| [34] | Spigarelli S, El Mehtedi M, Regev M. Enhanced plasticity and creep in an extruded Mg-Zn-Zr alloy[J]. Scripta Materialia, 2010, 63(6): 617-620. |
| [35] | Kim W J, Park I B. Enhanced superplasticity and diffusional creep in ultrafine-grained Mg-6Al-1Zn alloy with high thermal stability[J]. Scripta Materialia, 2013, 68(3/4): 179-182. |
| [36] | Xie D S, Pan H C, Pan Z, et al. Achieving outstanding heat-resistant properties in Mg alloy via constructing stable solute-network[J]. Materials Research Letters, 2023, 11(5): 374-382. |
| [37] | Zhang D P, Li B Q, Zhang J H, et al. Influence of minor RE addition on microstructures, tensile properties, and creep resistance in a die-cast Mg-Al-Ca-Mn alloy[J]. Journal of Materials Research and Technology, 2023, 26: 3136-3145. |
| [38] | Jung Y G, Yang W, Kim Y J, et al. Effect of Ca addition on the microstructure and mechanical properties of heat-treated Mg-6.0Zn-1.2Y-0.7Zr alloy[J]. Journal of Magnesium and Alloys, 2021, 9(5): 1619-1631. |
| [39] | Zhang D D, Sun X Y, Pan H C, et al. Role of Yb in enhancing the heat resistance of cast Mg-Sm-Zn alloy[J]. Materials Science and Engineering: A, 2022, 841: 143009. |
| [40] | Ono N, Nowak R, Miura S. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium [J]. Materials Letters, 2004, 58(1/2): 39-43. |
| [41] | Wang H, Dong S L, Lyu G. Plastic deformation characteristics of an Mg-3Al-1Zn alloy at low temperatures[J]. Materials & Design, 2016, 92: 143-150. |
| [42] | Estrin Y Z, Zabrodin P A, Braude I S, et al. Low-temperature plastic deformation of AZ31 magnesium alloy with different microstructures[J]. Low Temperature Physics, 2010, 36(12): 1100-1106. |
| [43] | Shumilin S E, Janecek M, Isaev N V, et al. Low temperature plasticity of ultrafine-grained AE42 and AZ31 magnesium alloys[J]. Advanced Engineering Materials, 2013, 15(5): 352-357. |
| [44] | Pustovalov V V. Serrated deformation of metals and alloys at low temperatures (review)[J]. Low Temperature Physics, 2008, 34(9): 683-723. |
| [45] | Chen B, Zheng J X, Yang C M, et al. Mechanical properties and deformation mechanisms of Mg-Gd-Y-Zr alloy at cryogenic and elevated temperatures[J]. Journal of Materials Engineering and Performance, 2017, 26(2): 590-600. |
| [46] | Xiong C X, Zhang X M, Deng Y L, et al. Effects of cryogenic treatment on mechanical properties of extruded Mg-Gd-Y-Zr(Mn) alloys[J]. Journal of Central South University of Technology, 2007, 14(3): 305-309. |
| [47] | Zhang X F, Wu G H, Liu W C, et al. Low temperature mechanical properties of as-extruded Mg-10Gd-3Y-0.5Zr magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 2883-2890. |
| [48] | 肖阳,张新明.Mg-9Gd-4Y-0.6Zr合金的低温塑性分析[J].特种铸造及有色合金,2010, 30(9): 794-796, |
| Ⅰ-Ⅱ. | |
| Xiao Yang, Zhang Xin-ming. Cryogenic plasticity analysis of Mg-9Gd-4Y-0.6Zr alloy [J]. Special casting & nonferrous alloys, 2010, 30(9): 794-796,Ⅰ-Ⅱ. | |
| [49] | Zhang K, Zheng J H, Huang Y, et al. Evolution of twinning and shear bands in magnesium alloys during rolling at room and cryogenic temperature[J]. Materials & Design, 2020, 193: 108793. |
| [50] | Lee S W, Kim S H, Park S H. Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing[J]. Journal of Magnesium and Alloys, 2020, 8(2): 537-545. |
| [51] | Della V N M, Tian C H, Sharma A, et al. Temperature dependent critical stress for {10 1 ¯ 2} twinning in magnesium micropillars at cryogenic temperatures [J]. Scripta Materialia, 2023, 226: 115195. |
| [52] | Della V N M, Sharma A, Kalácska S, et al. Evolution of deformation twinning mechanisms in magnesium from low to high strain rates[J]. Materials & Design, 2022, 217: 110646. |
| [53] | Somekawa H, Ogawa Y, Ono Y, et al. Deformation behavior at cryogenic temperature in extruded Mg-Al-Zn alloy[J]. Philosophical Magazine Letters, 2022, 102(11/12): 396-406. |
| [54] | Zhang K, Jiang J. Enhancement of plasticity in Mg-3Al-1Zn alloy at cryogenic temperature[J]. Journal of Materials Research and Technology, 2023, 25: 7454-7459. |
| [55] | Arul Kumar M, Gong M, Beyerlein I J, et al. Role of local stresses on co-zone twin-twin junction formation in HCP magnesium[J]. Acta Materialia, 2019, 168: 353-361. |
| [56] | Zhang K, Zheng J H, Hopper C, et al. Enhanced plasticity at cryogenic temperature in a magnesium alloy[J]. Materials Science and Engineering: A, 2021, 811: 141001. |
| [57] | Ding Q Q, Fu X Q, Chen D K, et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium-to high-entropy alloys at cryogenic temperatures[J]. Materials Today, 2019, 25: 21-27. |
| [58] | Chaudry U M, Noh Y, Hamad K, et al. Effect of deformation temperature on the slip activity in pure Mg and AZX211[J]. Journal of Materials Research and Technology, 2022, 19: 3406-3420. |
| [59] | Wang S, Pan H C, Xie D S, et al. Grain refinement and strength enhancement in Mg wrought alloys: a review[J]. Journal of Magnesium and Alloys, 2023, 11(11): 4128-4145. |
| [60] | Zeng Z H, Pan H C, Pan Z, et al. Effect of Sm and Ce content on microstructure and mechanical property of newly developed Mg-Sm-Ce-Mn based alloy[J]. Materials Characterization, 2023, 206: 113420. |
| [61] | Pan Z, Pan H C, Huang Y, et al. Improving mechanical properties of Mg-Sn alloys by co-addition of Li and Al[J]. Progress in Natural Science: Materials International, 2023, 33(3): 355-363. |
| [62] | Ulacia I, Dudamell N V, Gálvez F, et al. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates[J]. Acta Materialia, 2010, 58(8): 2988-2998. |
| [63] | Figueiredo R B, Poggiali F S, Silva C L, et al. The influence of grain size and strain rate on the mechanical behavior of pure magnesium [J]. Journal of Materials Science, 2016, 51: 3013-3024. |
| [64] | Nagarajan S, Gurao N P, Parameswaran V. On the kinetics of texture development in Al-Mg alloy under high strain rate tension [J]. Materials Characterization, 2020, 163: 110303. |
| [65] | Li L, Muránsky O, Flores-Johnson E A, et al. Effects of strain rate on the microstructure evolution and mechanical response of magnesium alloy AZ31[J]. Materials Science and Engineering: A, 2017, 684: 37-46. |
| [66] | Asgari H, Szpunar J A, Odeshi A G. Texture evolution and dynamic mechanical behavior of cast AZ magnesium alloys under high strain rate compressive loading[J]. Materials & Design, 2014, 61: 26-34. |
| [67] | Dixit N, Xie K Y, Hemker K J, et al. Microstructural evolution of pure magnesium under high strain rate loading[J]. Acta Materialia, 2015, 87: 56-67. |
| [68] | Malik A, Wang Y W, Cheng H W, et al. Fracture behavior of twin induced ultra-fine grained ZK61 magnesium alloy under high strain rate compression[J]. Journal of Materials Research and Technology, 2019, 8(4): 3475-3486. |
| [69] | Dudamell N V, Ulacia I, Gálvez F, et al. Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature[J]. Acta Materialia, 2011, 59(18): 6949-6962. |
| [70] | Asgari H, Szpunar J A, Odeshi A G, et al. Effect of grain size on high strain rate deformation of rolled Mg-4Y-3RE alloy in compression [J]. Materials Science and Engineering: A, 2015, 633: 92-102. |
| [71] | Wang Z, Cao G S, Wang F, et al. Investigation of the microstructure and properties of extrusion-shear deformed ZC61 magnesium alloy under high strain rate deformation[J]. Materials Characterization, 2021, 172: 110839. |
| [72] | Petronio B M, Pietrantonio M, Pietroletti M, et al. Metal speciation and bio-availability in marine sediments of Nothern Adiatic sea [C]//7th FECS Conference on Chemistry and the Environment. Porto. 2000: 320. |
| [73] | Cao F Y, Zhao C, You J, et al. The inhibitive effect of artificial seawater on magnesium corrosion[J]. Advanced Engineering Materials, 2019, 21(8): 1900363. |
| [74] | Jönsson M, Persson D, Leygraf C. Atmospheric corrosion of field-exposed magnesium alloy AZ91D[J]. Corrosion Science, 2008, 50(5): 1406-1413. |
| [75] | Yang L H, Liu C, Wang Y, et al. Dynamic marine atmospheric corrosion behavior of AZ91 Mg alloy sailing from Yellow Sea to Western Pacific Ocean[J]. Materials, 2024, 17(10): 2294. |
| [76] | Jiang Q T, Lu D Z, Cheng L R, et al. The corrosion characteristic and mechanism of Mg-5Y-1.5Nd-xZn-0.5Zr (x=0, 2, 4, 6 wt%) alloys in marine atmospheric environment[J]. Journal of Magnesium and Alloys, 2024, 12(1): 139-158. |
| [77] | Jiang Q T, Lu D Z, Wang N, et al. The corrosion behavior of Mg-Nd binary alloys in the harsh marine environment[J]. Journal of Magnesium and Alloys, 2021, 9(1): 292-304. |
| [78] | 林梦晓,张杰,蒋全通,等.海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J].材料工程,2020, 48(1): 98-107. |
| Lin Meng-xiao, Zhang Jie, Jiang Quan-tong, et al. Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater[J]. Journal of Materials Engineering, 2020, 48(1): 98-107. | |
| [79] | Man C, Dong C F, Wang L, et al. Long-term corrosion kinetics and mechanism of magnesium alloy AZ31 exposed to a dry tropical desert environment[J]. Corrosion Science, 2020, 163: 108274. |
| [80] | Song G L, StJohn D. Corrosion behaviour of magnesium in ethylene glycol[J]. Corrosion Science, 2004, 46(6): 1381-1399. |
| [81] | Pang M Y, Zhong T, Jin S Y, et al. Tailoring the degradation rate of magnesium-lithium alloy with alloying elements of gadolinium and nickel[J]. Journal of Alloys and Compounds, 2024, 976: 173115. |
| [82] | Xie Q Y, Ma A B, Jiang J H, et al. Tailoring the corrosion behavior and mechanism of AZ31 magnesium alloys by different Ca contents for marine application[J]. Corrosion Science, 2021, 192: 109842. |
| [83] | Chen J H, Zhang C, Hu Z H, et al. Corrosion behavior of the second phase in Mg-9Gd-3Y-2Zn-0.5Zr alloy under simulated coastal storage environment[J]. NPJ Materials Degradation, 2024, 8(1): 69. |
| [84] | Wang J H, Liu B Y, Sun Q, et al. Effects of Y substituting Gd on the microstructure evolution, mechanical properties and dissolution behaviors in the Mg-Gd-Ni alloys used as fracturing plugging tools[J]. Journal of Materials Research and Technology, 2024, 28: 4262-4274. |
| [85] | Dai C N, Zhang S L, Wang Y, et al. Elucidation of the corrosion rate enhancement mechanism in Mg-Er-Gd-Ni alloys with high volume fraction of LPSO phase and different Gd contents after extrusion[J]. Journal of Materials Research and Technology, 2023, 27: 522-541. |
| [86] | Feng B J, Zhu K, Shang X Q, et al. Improving the corrosion and mechanical properties of Mg-8Gd-3Y-0.4Zr alloy synergistically via regulating micro-galvanic corrosion and dislocation density[J]. Corrosion Science, 2024, 237: 112275. |
| [87] | Jiang Q T, Lu D Z, Cheng L R, et al. The corrosion behavior of EW75 magnesium alloy in the research vessel KEXUE during the ocean voyage[J]. NPJ Materials Degradation, 2022, 6(1): 28. |
| [88] | Feng B J, Shang X Q, Xie T, et al. Influence of texture on the corrosion behavior of an as-extruded Mg-8Al-0.5In alloy sheet[J]. Journal of Materials Research and Technology, 2023, 27: 1497-1508. |
| [89] | Tang C Y, Pan J Y, Wu J Y, et al. Surroundings-adaptive coating enabling robustness of magnesium alloys[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2024, 696: 134385. |
| [90] | Zhao X, Wei J F, Li B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science, 2020, 575: 140-149. |
| [91] | Liu L, Li X, Lei J L, et al. Superamphiphobic magnesium alloys with extraordinary environmental adaptability[J]. Langmuir, 2021, 37(14): 4267-4275. |
| [92] | Wang Y, Gu Z P, Liu J, et al. An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy[J]. Surface and Coatings Technology, 2019, 360: 276-284. |
| [1] | Qi-chi LE, Chen ZHOU, Wei-tao JIA, Yun-peng DING. Thermal Deformation Behavior of AZ31B Magnesium Alloy During Near-Isothermal Rolling [J]. Journal of Northeastern University(Natural Science), 2025, 46(8): 124-132. |
| [2] | Tao ZHANG, Chuang LIU, Yi ZHANG, Fu-hui WANG. Effect of Silanization on Degradation Performance of Micro-arc Oxidation Coatings on Magnesium Alloys Surfaces [J]. Journal of Northeastern University(Natural Science), 2025, 46(8): 105-112. |
| [3] | Yang ZHAO, Yu-hang WANG, Tao ZHANG, Fu-hui WANG. Research Progress on the Corrosion Failure Behavior of Coatings on Aluminum Alloy for Semiconductor Fabrication Equipment [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 28-45. |
| [4] | Meng CHEN, Xin-ming YANG, Yu-ting WANG, Tong ZHANG. Multiscale Calculation Model for High Temperature Heat Transfer Property of Polypropylene Fiber Reinforced Concrete [J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 111-117. |
| [5] | Feng DAI, Jing-xian LIU. Analysis of the Aging Behavior of Polyester Filter Media for Steel Companies in a Composite Environment [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 883-889. |
| [6] | Qing-feng ZHU, Jian-hang HUANG, Yang GAO, En-ge ZHANG. Effects of Stabilizing Annealing Temperature on Microstructure and Properties of Cold-Rolled 5059 Aluminum Alloy Plate [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 323-330. |
| [7] | LI Feng-hua, LIU Xiao, LI Ying-nan, FAN Rui. Effects of Manganese Source on Synthesis and Adsorption Properties of Lithium Ion Sieve [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1279-1284. |
| [8] | LI Na, GAO Cheng-kang, BA Qiao, NA Hong-ming. Study on Localized Emission Factors of Heavy-Duty Diesel Trucks in Mid-Southern Liaoning Urban Agglomerations [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1119-1127. |
| [9] | ZHANG Ya-jing, WANG Jin-peng, CHEN Xin, WU Hang-yu. Preparation and Properties of Biodegradable Zn-3Cu-xMn Alloys [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1104-1110. |
| [10] | LIU Jing-xian, DAI Feng, MAO Ning. Effect of Acid-Base Interaction Corrosion on Properties of Aramid Filter [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 1034-1040. |
| [11] | HE Sheng, QIN Zhi-di, LI Yu-tao5, YU Peng. Performance Degradation Law of Concretes in the Multi-salt Coupling Corrosion Environment [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 581-589. |
| [12] | JIA Peng, LI Bo, ZHU Peng-cheng, WANG Qi-wei. Electrical Response Characteristics of High Temperature Damaged Sandstones Under Uniaxial Compression [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 558-564. |
| [13] | WANG Zhao-dong, LI Xin-le, LI Yong, LU Bing. Two-Stage Homogenization of Al-Zn-Mg-Cu Alloy to Improve Al3Zr Precipitation Processed by Twin-Roll Casting [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 495-501. |
| [14] | JIA Peng, ZHU Peng-cheng, LI Bo, MAO Song-ze. Experimental Study on Wave Characteristics and Acoustic Emission Characteristics of Thermal Damaged Marble [J]. Journal of Northeastern University(Natural Science), 2023, 44(2): 279-288. |
| [15] | HE Sheng, WANG Xiao, YU Peng, LI Yu-tao. Development Model of Concrete Corrosion Damage in Multi-salt Coupling Environment [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1499-1506. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||