JIANG Lin-ying, YU Dong-hai, SHI Xin. Tumor Microarray Gene Expression Data Classification Based on Weighted Extreme Learning Machine[J]. Journal of Northeastern University Natural Science, 2017, 38(6): 798-803.
[1]Lee K,Man Z H,Wang D H,et al.Classification of microarray datasets using finite impulse response extreme learning machine for cancer diagnosis[J].IEEE Industrial Electronics Society,2011,22(5):2347-2352
[2]Zong W W,Huang G B,Chen Y Q.Weighted extreme learning machine for imbalance learning[J].Neurocomputing,2013,101(3):229-242.
[3]Su Y R,Wang R J,Li C X,et al.A dynamic subspace learning method for tumor classification using microarray gene expression data[C]//7th International Conference on Natural Computation.Shanghai,2011:396-400.
[4]Zhang X,Guan N Y,Jia Z L,et al.Semi-supervised projective non-negative matrix factorization for cancer classification[J].Plos One,2015,10(9):e0138814.
[5]García V,Sánchez J S.Mapping microarray gene expression data into dissimilarity spaces for tumor classification[J].Information Sciences,2015,294:362-375
[6]Zheng C H,Ng T Y,Zhang L,et al.Tumor classification based on non-negative matrix factorization using gene expression data[J].IEEE Transactions on Nanobioscience,2011,10(2):86-93.
[7]Bolón-Canedo V,Sánchez-Marono N,Alonso-Betanzos A.Distributed feature selection:an application to microarray data classification[J].Applied Soft Computing,2015,30:136-150.
[8]李克文,杨磊,刘文英,等.基于RSBoost算法的不平衡数据分类方法[J].计算机科学,2015,42(9):249-252.(Li Ke-wen,Yang Lei,Liu Wen-ying,et al.Classification method of imbalanced data based on RSBoost[J].Computer Science,2015,42(9):249-252.)
[9]张枭山,罗强.一种基于聚类融合欠抽样的不平衡数据分类方法[J].计算机科学,2015,42(B11):63-66.(Zhang Xiao-shan,Luo Qiang.Unbalanced data classification algorithm based on clustering ensemble under-sampling[J].Computer Science,2015,42(B11):63-66.)
[10]郑燕,王杨,郝青峰,等.用于不平衡数据分类的代价敏感超网络算法[J].计算机应用,2014,34(5):1336-1340.(Zheng Yan,Wang Yang,Hao Qing-feng,et al.Cost-sensitive hypernetworks for imbalanced data classification[J].Journal of Computer Applications,2014,34(5):1336-1340.)
[11]Alshamlan H M,Badr G H,Alohali Y A.Genetic bee colony (GBC) algorithm:a new gene selection method for microarray cancer classification[J].Computational Biology & Chemistry,2015,56:49-60.
[12]Nguyen T,Khosravi A,Creighton D,et al.Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification[J].Plos One,2015,10(3):e0120364.
[13]Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70:489-501.
[14]Sánchez M J,Cruz R M,Fernández N F,et al.On the suitability of extreme learning machine for gene classification using feature selection[C]// International Conference on Intelligent Systems Design & Applications.Sanya,2010:507-512.
[15]Baboo S S,Sasikala S.Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis[J].Communication Control and Computing Technologies,2010,4(3):748-757.
[16]Bharathi A,Natarajan A M.Microarray gene expression cancer diagnosis using machine learning algorithms[C]//International Conference on Signal & Image Processing.Quebec,2010:275-280.