LIU Fang, LIU Xin-yi, SU Wei-xing, LIN Hui. Online Estimation Method for State of Health of Electric Vehicle Power Battery[J]. Journal of Northeastern University Natural Science, 2020, 41(4): 492-498.
[1]Cano Z P,Banham D,Ye S,et al.Batteries and fuel cells for emerging electric vehicle markets[J].Nature Energy,2018,3(4):279-289. [2]Yang J F,Xia B,Huang W X,et al.Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J].Applied Energy,2018,212:1589-1600. [3]Shen P,Ouyang M,Lu L,et al.The co-estimation of state of charge,state of health and state of function for lithium-ion batteries in electric vehicles[J].IEEE Transactions on Vehicular Technology,2017,67(1):92-103. [4]Ungurean L,Gabriel C,Micea M V,et al.Battery state of health estimation:a structured review of models,methods and commercial devices[J].International Journal of Energy Research,2016,41(2):151-181. [5]Eddahech A,Briat O,Bertrand N,et al.Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks[J].International Journal of Electrical Power & Energy Systems,2012,42(1):487-494. [6]Hannan M A,Lipu M S H,Hussain A,et al.Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm[J].IEEE Access,2018,6:10069-10079. [7]Chen Z,Sun M,Shu X,et al.Online state of health estimation for lithium-ion batteries based on support vector machine[J].Applied Sciences,2018,8(6):925-930. [8]Hossain L M S,Hannan M A,Aini H,et al.A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles:challenges and recommendations[J].Journal of Cleaner Production,2018,205:115-133. [9]Zheng L,Zhu J,Lu D D C,et al.Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J].Energy,2018,150:759-769. [10]Feng X,Li J J,Ouyang M,et al.Using probability density function to evaluate the state of health of lithium-ion batteries[J].Journal of Power Sources,2013,232(18):209-218. [11]Wassiliadis N,Adermann J,Frericks A,et al.Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation:a use-case life cycle analysis[J].Journal of Energy Storage,2018,19:73-87. [12]Liu S L,Cui N X,Zhang C H,et al.State of health estimation of lithium-ion battery based on AUKF[J].Power Electron,2017,11:122-124. [13]Xiong R,Zhang Y,He H,et al.A double-scale,particle-filtering,energy state prediction algorithm for lithium-ion batteries[J].IEEE Transactions on Industrial Electronics,2017,65(2):1526-1538. [14]Guo Z,Qiu X,Hou G,et al.State of health estimation for lithium ion batteries based on charging curves[J].Journal of Power Sources,2014,249:457-462. [15]Liu F,Ma J,Su W X.Unscented particle filter for SOC estimation algorithm based on a dynamic parameter identification[J].Mathematical Problems in Engineering,2019,1:1-14. [15]关守平,房少纯.一种新型的区间-粒子群优化算法[J].东北大学学报(自然科学版),2012,33(10):1381-1384.(Guan Shou-ping,Fang Shao-chun.A new interval particle swarm optimization algorithm[J].Journal of Northeastern University(Natural Science),2012,33(10):1381-1384.)(上接第491页)图3两个算法在Bupa liver数据集的分类正确率Fig.3Classification accuracy rates of two algorithms on the Bupa liver dataset4结语1) 针对蝙蝠算法具有易陷入局部最优,收敛速度慢和求解精度不高等不足,本文提出了一种全局混沌蝙蝠优化算法(GCBA).2) GCBA算法使用混沌映射初始化种群,增强了初始化种群的丰富性.GCBA算法引入Pl和Pg优化位置更新公式,提升了算法的全局搜索能力.3) GCBA,BBA,PSO和GA的实验结果表明,GCBA算法不仅能够得到很好的分类精度,还具有良好的稳定性和全局搜索能力.验证了GCBA算法的有效性.