HAN Peng, GUO Tian, WANG Jin-kuan, SHI Ze-wei. PV Power Forecasting with Univariate Input Based on mRMR-ESN[J]. Journal of Northeastern University(Natural Science), 2021, 42(2): 174-179.
[1]耿新华.南开大学稳步推进非晶硅太阳电池产业化[J].天津科技,2001(3):29.(Geng Xin-hua.Nankai University has steadily promoted the industrialization of amorphous silicon solar cells[J].Tianjin Science and Technology,2001(3):29.) [2]龚莺飞,鲁宗相,乔颖,等.光伏功率预测技术[J].电力系统自动化,2016,40(4):140-151.(Gong Ying-fei,Lu Zong-xiang,Qiao Ying,et al.An overview of photovoltaic energy system output forecasting technology[J].Automation of Electric Power Systems,2016,40(4):140-151.) [3]胡海峰,伦淑娴.基于Leaky-ESN的光伏发电输出功率预测[J].电子设计工程,2016,24(17):15-17.(Hu Hai-feng,Lun Shu-xian.The output power forecasting based on Leaky-ESN[J].Electronic Design Engineering,2016,24(17):15-17.) [4]杨佳俊,闫凯,曹冉,等.基于泄漏积分型回声状态网络的在线学习光伏功率短期预测[J].山东电力技术,2018,45(4):24-30.(Yang Jia-jun,Yan Kai,Cao Ran,et al.Online learning PV power short term forecasting based on leaky-integrator ESN[J].Shandong Electric Power,2018,45(4):24-30.) [5]Yao X S,Wang Z S,Zhang H G.A novel photovoltaic power forecasting model based on echo state network[J].Neurocomputing,2019,325:182-189. [6]Yao X S,Wang Z S,Zhang H G.Identification method for a class of periodic discrete-time dynamic nonlinear systems based on sinusoidal ESN[J].Neurocomputing,2018,275:1511-1521. [7]Xu X H,Ren W J.Prediction of air pollution concentration based on mRMR and echo state network[J].Applied Sciences,2019,9(9):1811-1824. [8]Xu X H,Ren W J.Application of a hybrid model based on echo state network and improved particle swarm optimization in PM 2.5 concentration forecasting:a case study of Beijing,China[J].Sustainability,2019,11(11):3096-3115. [9]Lun S X,Yao X S,Hu H F.A new echo state network with variable memory length[J].Information Sciences,2016,370/371:103-119. [10]Lun S X,Wang S,Guo T T,et al.An I-V model based on time warp invariant echo state network for photovoltaic array with shaded solar cells[J].Solar Energy,2014,105:529-541. [11]Rana M,Koprinska I,Agelidis V G.Univariate and multivariate methods for very short-term solar photovoltaic power forecasting[J].Energy Conversion and Management,2016,121:380-390. [12]Jaeger H,Haas H.Harnessing nonlinearity:predicting chaotic systems and saving energy in wireless communication[J].Science,2004,304(5667):78-80. [13]Peng H C,Long F H,Ding C.Feature selection based on mutual information:criteria of max-dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238. [14]Fu L,Yang Y L,Yao X L,et al.A regional photovoltaic output prediction method based on hierarchical clustering and the mRMR criterion[J/OL].Energies,2019,12(20):3817 [2020-04-28].https://doi.org/10.3390/en12203817. [15]Du P D,Zhang G,Li P L,et al.The photovoltaic output prediction based on variational mode decomposition and maximum relevance minimum redundancy[J/OL].Applied Sciences,2019,9(17):3593 [2020-05-04].https://www.researchgate.net/publication/335579493_The_Photovoltaic_Output_Prediction_Based_on_Variational_Mode_Decomposition_and_Maximum_Relevance_Minimum_Redundancy.DOI:10.3390/app9173593.