1. Chengdu Institution of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Computer Science and Technology, Southwest Minzu University, Chengdu 610225, China.
[1]Dorigo M,Birattari M,Stutzle T.Ant colony optimization[J].IEEE Computational Intelligence Magazine,2006,1(4):28-39. [2]瞿博阳,梁静,Suganthan P N.双局部粒子群算法解决环境经济调度问题[J].计算机工程与应用,2014,50(11):1-6.(Qu Bo-yang,Liang Jing,Suganthan P N.Two local best based multi-objective particle swarm optimization algorithm to solve environmental/ economic dispatch problem[J].Computer Engineering and Application,2014,50(11):1-6.) [3]王柳静,张贵军,周晓根.基于状态估计反馈的策略自适应差分进化算法[J].自动化学报,2020,46(4):752-766.(Wang Liu-jing,Zhang Gui-jun,Zhou Xiao-gen.Strategy self-adaptive differential evolution algorithm based on state estimation feedback[J].Acta Automatica Sinica,2020,46(4):752-766.) [4]Karaboga D,Basturk B A.Powerful and efficient algorithm for numerical function optimization:artificial bee colony(ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471. [5]谭营,郑少秋.烟花算法研究进展[J].智能系统学报,2014,9(5):515-528.(Tan Ying,Zheng Shao-qiu.Recent advances in fireworks algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(5):515-528.) [6]Shi Y H.Brain storm optimization algorithm[C]//International Conference on Swarm Intelligence.Chongqing,2011:303-309. [7]Wang G G,Deb S,Coelho L.Elephant herding optimization[C]//2015 3rd International Symposium on Computational and Business Intelligence(ISCBI).Bali,Indonesia,2015:1-5. [8]刘三阳,靳安钊.求解约束优化问题的协同进化教与学优化算法[J].自动化学报,2018,44(9):1690-1697.(Liu San-yang,Jin An-zhao.A co-evolutionary teaching learning-based optimization algorithm for constrained optimization problems[J].Acta Automatica Sinica,2018,44(9):1690-1697.) [9]张聪明,刘立群,马立群.一种新的群智能算法:狮群算法[J].计算机科学,2018,45(6):114-116.(Zhang Cong-ming,Liu Li-qun,Ma Li-qun.New swarm intelligent algorithms:lions algorithm[J].Computer Science,2018,45(6):114-116.) [10]Hansen N,Müller S D,Koumoutsakos P.Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation(CMA-ES)[J].Evolutionary Computation,2003,11(1):1-18. [11]Wang P,Ye X G,Li B,et al.Multi-scale quantum harmonic oscillator algorithm for global numerical optimization[J].Applied Soft Computing,2018,69(1):655-670. [12]Ye X G,Wang P.Impact of migration strategies and individual stabilization on multi-scale quantum harmonic oscillator algorithm for global numerical optimization problems[J]. Applied Soft Computing,2019,85:105800. [13]Xin G,Wang P.Exploring superposition state in multi-scale quantum harmonic oscillator algorithm[J].Applied Soft Computing,2021,107:107398. [14]Wang P,Li B,Jin J,et al.Multi-scale quantum harmonic oscillator algorithm with individual stabilization strategy[C]// International Conference on Swarm Intelligence.Shanghai,2018:624-633. [15]Griffiths D J,Schroeter D F.Introduction to quantum mechanics[M].3rd ed.Cambridge:Cambridge University Press,2018. [16]Hansen N,Ostermeier A.Completely derandomized self-adaptation in evolution strategies[J].Evolutionary Computation,2001,9(2):159-195. [17]Hauschild M,Pelikan M.An introduction and survey of estimation of distribution algorithms[J].Swarm and Evolutionary Computation,2011,1(3):111-128. [18]Jamil M,Yang X S.A literature survey of benchmark functions for global optimization problems[J].International Journal of Mathematical Modeling and Numerical Optimization,2013,4(2):150-194. [19]Sun J,Xu W B,Feng B.A global search strategy of quantum-behaved particle swarm optimization[C]//IEEE Conference on Cybernetics and Intelligent Systems.Singapore,2004:8503878. [20]Zambrano-Bigiarini M,Clerc M,Rojas R.Standard particle swarm optimization 2011 at CEC-2013:a baseline for future PSO improvements[C]// IEEE Congress on Evolutionary Computation.Cancún,Mexico,2013:6557848. [21]Storn R,Price K.Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359. [22]Li J Z,Tan Y.The bare bones fireworks algorithm:a minimalist global optimizer[J].Applied Soft Computing,2018,62(1):454-462. [23]Wolpert D H,Macready W G.No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.