Research on Model Counting with Mixed Exactly-One Constraints
HAN Shu-ting1,2, LAI Yong1,2, LIU Jie1,2
1. College of Computer Science and Technology, Jilin University, Changchun 130012, China; 2. Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun 130012, China.
HAN Shu-ting, LAI Yong, LIU Jie. Research on Model Counting with Mixed Exactly-One Constraints[J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 463-469.
[1]Cook S.The complexity of theorem-proving procedures[C]// Proceedings of the Third Annual ACM Symposium on Theory of Computing.Nork York:Association for Computing Machinery,1971:151-158. [2]贺甫霖,刘磊,吕帅,等.基于格局检测的模型计数方法[J].软件学报,2020,31(2):395-405.(He Fu-lin,Liu Lei,Lyu Shuai,et al.Model counting methods based on configuration checking[J].Journal of Software,2020,31(2):395-405.) [3]Valiant L G.The complexity of enumeration and reliability problems[J].SIAM Journal on Computing,1979,8(3):410-421. [4]Bacchus F,Dalmao S,Pitassi T.Algorithms and complexity results for #SAT and Bayesian inference[C]// Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science.Cambridge:IEEE Press,2003:340-351. [5]Roth D.On the hardness of approximate reasoning[J].Artificial Intelligence,1996,82(1/2):273-302. [6]Domshlak C,Hoffmann J.Probabilistic planning via heuristic forward search and weighted model counting [J].Journal of Artificial Intelligence Research,2011,30(1):565-620. [7]Biondi F,Enescu M A,Heuser A,et al.Scalable approximation of quantitative information flow in programs[M].Los Angeles:Springer-Verlag,2018:71-93. [8]Baluta T,Shen S,Shinde S,et al.Quantitative verification of neural networks and its security applications[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security.New York:Association for Computing Machinery,2019:1249-1264. [9]Sang T,Beame P,Kautz H.Heuristics for fast exact model counting[C]// International Conference on Theory & Applications of Satisfiability Testing.Berlin:Springer-Verlag,2005:226-240. [10]Thurley M.SharpSAT:counting models with advanced component caching and implicit BC[C]// International Conference on Theory and Applications of Satisfiability Testing.Berlin:Springer-Verlag,2006:424-429. [11]Sharma S,Roy S,Soos M,et al.GANAK:a scalable probabilistic exact model counter[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.Macao:IJCAI Press,2019:1169-1176. [12]Darwiche A.New advances in compiling CNF into decomposable negation normal form[C]// Proceedings of the 16th European Conference on Artificial Intelligence.Amsterdam:IOS Press,2004:328-332. [13]Darwiche A.Decomposable negation normal form[J]. Journal of the Association for Computing Machinery,2001,48(4):608-647. [14]吕帅,张桐搏,王强,等.两种新的基于扩展规则#SAT问题求解算法[J].东北大学学报(自然科学版),2019,40(5):630-634,646.(Lyu Shuai,Zhang Tong-bo,Wang Qiang,et al.Two novel algorithms based on extension rule for solving #SAT problem[J].Journal of Northeastern University(Natural Science),2019,40(5):630-634,646.) [15]Lai Y,Meel K S,Yap R H C.The power of literal equivalence in model counting[C]// Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence.California:AAAI Press,2021:3851-3859. [16]Junttila T A,Kaski P.Exact cover via satisfiability:an empirical study[C]// Principles and Practice of Constraint Programming-CP 2010.Berlin:Springer-Verlag,2010:297-304.(上接第462页)Toeplitz矩阵,并将其作为新的自相关矩阵做特征值分解运算得到噪声子空间;对噪声子空间作翻转拆分处理,重构新的求根多项式;最终通过求根运算得到DOA估计值.仿真实验结果表明,相较于部分前人算法,本文算法拥有更高的DOA估计精度,其均方根误差更接近于经典Root-MUSIC算法及无偏估计量下界,同时拥有更高的鲁棒性及稳定性,其时间复杂度则基本不高于前人算法.