ZHANG Xue-feng, XU Hua-wen, YANG Mian-zimei. High Perceptual Image Compression Based on Conditional GAN[J]. Journal of Northeastern University(Natural Science), 2022, 43(6): 783-791.
[1]Wallace G K.The JPEG still picture compression standard[J].IEEE Transactions on Consumer Electronics,1992,38(1):18-34. [2]Rabbani M.JPEG2000:image compression fundamentals,standards and practice[M].Berlin:Springer,2002. [3]Developers G.Compression techniques [EB/OL].[2021-07-23].https://developers.google.com/speed/webp/docs. [4]Bellard F.BPG image format[EB/OL].[2021-07-23].https://bellard.org/bpg/. [5]Sullivan G J,Ohm J R,Han W J,et al.Overview of the high efficiency video coding(HEVC)standard[J].IEEE Transactions on Circuits and Systems for Video Technology,2012,22(12):1649-1668. [6]Toderici G,O′Malley S M,Hwang S J,et al.Variable rate image compression with recurrent neural networks[EB/OL].[2021-07-23].https://arxiv.org/abs/1511.06085v5. [7]Toderici G,Vincent D,Johnston N,et al.Full resolution image compression with recurrent neural networks[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:5306-5314. [8]Ballé J,Laparra V,Simoncelli E P.End-to-end optimized image compression[EB/OL].[2021-07-23].https://arxiv.org/abs/1611.01704. [9]Theis L,Shi W,Cunningham A,et al.Lossy image compression with compressive autoencoders[EB/OL].[2021-07-23].https://arxiv.org/abs/1703.00395. [10]Agustsson E,Mentzer F,Tschannen M,et al.Soft-to-hard vector quantization for end-to-end learning compressible representations [EB/OL].[2021-07-23].https://arxiv.org/abs/1704.00648. [11]Ballé J,Minnen D,Singh S,et al.Variational image compression with a scale hyperprior[EB/OL].[2021-07-23].http://export.arxiv.org/abs/1802.01436. [12]Mentzer F,Agustsson E,Tschannen M,et al.Conditional probability models for deep image compression[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,2018:4394-4402. [13]Li M,Zuo W,Gu S,et al.Learning convolutional networks for content-weighted image compression[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,2018:3214-3223. [14]Rippel O,Bourdev L.Real-time adaptive image compression[C]// International Conference on Machine Learning.Sydney,2017:2922-2930. [15]Minnen D,Ballé J,Toderici G.Joint autoregressive and hierarchical priors for learned image compression[EB/OL].[2021-07-23].https://arxiv.org/abs/1809.02736. [16]Goodfellow I J,Pouget Abadie J,Mirza M,et al.Generative adversarial networks[EB/OL].[2021-07-23].https://arxiv.org/abs/1406.2661. [17]王雪松,晁杰,程玉虎.基于自注意力生成对抗网络的图像超分辨率重建[J].控制与决策,2021,36(6):1324-1332.(Wang Xue-song,Chao Jie,Cheng Yu-hu.Image super-resolution reconstruction based on self-attention GAN[J].Control and Decision,2021,36(6):1324-1332.) [18]Karras T,Laine S,Aila T.A style-based generator architecture for generative adversarial networks[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,2019:4401-4410. [19]Park T,Liu M Y,Wang T C,et al.Semantic image synthesis with spatially-adaptive normalization[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,2019:2337-2346. [20]邓廷权,盛春冬.结合变精度粗糙熵和遗传算法的图像阈值分割方法[J].控制与决策,2011,26(7):1079-1082.(Deng Ting-quan,Sheng Chun-dong.Image threshold segmentation based on entropy of variable precision rough sets and genetic algorithm[J].Control and Decision,2011,26(7):1079-1082.) [21]张雪峰,闫慧.基于中值滤波和分数阶滤波的图像去噪与增强算法[J].东北大学学报(自然科学版),2020,41(4):482-487.(Zhang Xue-feng,Yan Hui.Image denoising and enhancement algorithm based on median filtering and fractional order filtering[J].Journal of Northeastern University(Natural Science),2020,41(4):482-487.) [22]Zhu X,Zhang X,Zhang X Y,et al.A novel framework for semantic segmentation with generative adversarial network[J].Journal of Visual Communication and Image Representation,2019,58:532-543. [23]Vo D M,Nguyen D M,Le T P,et al.HI-GAN:a hierarchical generative adversarial network for blind denoising of real photographs[J].Information Sciences,2021,570:225-240. [24]Tschannen M,Agustsson E,Lucic M.Deep generative models for distribution-preserving lossy compression [EB/OL].[2021-07-23].https://arxiv.org/abs/1805.11057. [25]Blau Y,Michaeli T.Rethinking lossy compression:the rate-distortion-perception tradeoff[C]// International Conference on Machine Learning.Sydney,2019:675-685. [26]Agustsson E,Tschannen M,Mentzer F,et al.Generative adversarial networks for extreme learned image compression[C]// Proceedings of the IEEE/CVF Internat ional Conference on Computer Vision.Seoul, 2019:221-231. [27]Mentzer F,Toderici G,Tschannen M,et al.High-fidelity generative image compression[EB/OL].[2021-07-23].https://arxiv.org/abs/2006.09965. [28]Wang T C,Liu M Y,Zhu J Y,et al.High-resolution image synthesis and semantic manipulation with conditional gans[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,2018:8798-8807. [29]Mirza M,Osindero S.Conditional generative adversarial nets[EB/OL].[2021-07-23].https://arxiv.org/abs/1411.1784. [30]Ding K,Ma K,Wang S,et al.Image quality assessment:unifying structure and texture similarity[EB/OL].[2021-07-23].https://arxiv.org/abs/2004.07728.[31]Zhang R,Isola P,Efros A A,et al.The unreasonable effectiveness of deep features as a perceptual metric[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,2018:586-595.[32]Lin T Y,Maire M,Belongie S,et al.Microsoft COCO:common objects in context[C]// European Conference on Computer Vision.Zurich,2014:740-755.[33]Asuni N,Giachetti A.Testimages:a largescale archive for testing visual devices and basic image processing algorithms[C]// STAG:Smart Tools & Apps for Graphics.Cagliari,2014:6370.[34]Heusel M,Ramsauer H,Unterthiner T,et al.GANS trained by a two timescale update rule converge to a local Nash equilibrium [EB/OL].[2021-07-23].https://arxiv.org/abs/1706.08500.[35]Bińkowski M,Sutherland D J,Arbel M,et al.Demystifying MMD GANS[EB/OL].[2021-07-23].https://arxiv.org/abs/1801.01401.