A Parameter Self-tuning Model for Wind Power Prediction
ZHAI Jun-chang1, GE Yan-feng2, LIANG Peng3, GAO Li-qun1
1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. Liaoning Electric Power Company Limited,Shenyang 110006,China; 3. Jinzhou City Power Supply Company, State Grid Liaoning Electric Power Company Limited, Jinzhou 121000, China.
ZHAI Jun-chang, GE Yan-feng, LIANG Peng, GAO Li-qun. A Parameter Self-tuning Model for Wind Power Prediction[J]. Journal of Northeastern University Natural Science, 2016, 37(2): 153-156.
[1]Ghadi M J,Gilani S H,Afrakhte H,et al.A novel heuristic method for wind farm power prediction:a case study[J].International Journal of Electrical Power & Energy Systems,2014,63:962-970. [2]Yan G G,Liu Y,Mu G,et al.The ultra-short term prediction of wind power based on chaotic time series[J].Energy Procedia,2012,17:1490-1496. [3]Costa A,Crespo A,Navarro J,et al.A review on the young history of the wind power short-term prediction[J].Renewable & Sustainable Energy Reviews,2008,12(6):1725-1744. [4]Brown B G,Katz R W,Murphy A H.Time series models to simulate and forecast wind speed and wind power[J].Journal of Climate and Applied Meteorology,1984,23(8):1184-1195. [5]Louka P,Galanis G,Siebert N,et al.Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(12):2348-2362. [6]Taylor J W,McSharry P E,Buizza R.Wind power density forecasting using ensemble predictions and time series models[J].IEEE Transactions on Energy Conversion,2009,24(3):775-782. [7]Ding M,Zhang L J,Wu Y C.Wind speed forecast model for wind farms based on time series analysis [J].Electric Power Automation Equipment,2005,25(8):32-34. [8]Li S,Wunsch D C,O′Hair E A,et al.Using neural networks to estimate wind turbine power generation[J]. IEEE Transactions on Energy Conversion ,2001,16(3):276 - 282. [9]Miranda M S,Dunn R W.One-hour-ahead wind speed prediction using a Bayesian methodology [C]//IEEE Power Engineering Society General Meeting. Montreal,2006 :1-6. [10]戚双斌,王维庆,张新燕.基于支持向量机的风速与风功率预测方法研究[J].华东电力,2009,37(9):1600-1603.(Qi Shuang-bin,Wang Wei-qing,Zhang Xin-yan.Wind speed and wind power prediction based on SVM [J].East China Electric Power,2009,37(9):1600-1603.)