LIU Fang, LIU Yan-peng, LI Jing-dong, BU Fan-tao. Online Estimation of State of Health During Discharging of Vehicle Power Battery[J]. Journal of Northeastern University(Natural Science), 2022, 43(11): 1544-1551.
[1]孙丙香,任鹏博,陈育哲,等.锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J].电工技术学报,2021,36(3):666-674.(Sun Bing-xiang,Ren Peng-bo,Chen Yu-zhe,et al.Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J].Transactions of China Electrotechnical Society,2021,36(3):666-674.) [2]Hannan M A,Lipu M S H,Hussain A,et al.A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications:challenges and recommendations[J].Renewable and Sustainable Energy Reviews,2017,78:834-854. [3]李超然,肖飞,樊亚翔,等.基于卷积神经网络的锂离子电池SOH估算[J].电工技术学报,2020,35(19):4106-4119.(Li Chao-ran,Xiao Fei,Fan Ya-xiang,et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network [J].Transactions of China Electrotechnical Society,2020,35(19):4106-4119.) [4]Hannan M A,Lipu M S H,Hussain A,et al.Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm[J].IEEE Access,2018,6:10069-10079. [5]Chen Z,Sun M,Shu X,et al.Online state of health estimation for lithium-ion batteries based on support vector machine[J].Applied Sciences,2018,8(6):925. [6]Richardson R R,Birkl C R,Osborne M A,et al.Gaussian process regression for in-situ capacity estimation of lithium-ion batteries[J].IEEE Transactions on Industrial Informatics,2018,15:127-138. [7]Li Y,Zou C,Berecibar M,et al.Random forest regression for online capacity estimation of lithium-ion batteries[J].Applied Energy,2018,232:197-210. [8]Tang X,Zou C,Yao K,et al.A fast estimation algorithm for lithium-ion battery state of health[J].Journal of Power Sources,2018,396:453-458. [9]Berecibar M,Garmendia M,Gandiaga I,et al.State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application[J].Energy,2016,103(15):784-796. [10]Li Y,Abdel-Monem M,Gopalakrishnan R,et al.A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J].Journal of Power Sources,2018,373:40-53. [11]Schiffer Z J,Cannarella J,Arnold C B.Strain derivatives for practical charge rate characterization of lithium ion electrodes[J].Journal of Electrochemical Society,2016,163(3):A427-A433. [12]Samad N A,Kim Y,Siegel J B,et al.Battery capacity fading estimation using a force-based incremental capacity analysis[J].Journal of the Electrochemical Society,2016,163(8):A1584-A1594. [13]Wu Y,Jossen A.Entropy-induced temperature variation as a new indicator for state of health estimation of lithium-ion cells[J].Electrochimica Acta,2018,276:370-376. [14]Liu F,Ma J,Su W X,et al.SOC estimation based on data driven exteaded Kalman filter algorithm for power battery of electric vehicle and plug-in electric vehicle[J].Journal of Central South University,2019,26(6):1402-1415. [15]陈文帅.基于灰色-AR模型的电动汽车锂离子电池寿命预测研究[D].长春:长春工业大学,2018.(Chen Wen-shuai.Research on life prediction of lithium-ion battery in electric vehicles based on gray-AR model [D].Changchun:Changchun University of Technology,2018.) [16]Yang D,Wang Y,Pan R,et al.State-of-health estimation for the lithium-ion battery based on support vector regression[J].Applied Energy,2018,227:273-283. [17]Liu F,Ma J,Su W X.Unscented particle filter for SOC estimation algorithm based on a dynamic parameter identification[J].Mathematical Problems in Engineering,2019,2019:7452079. [18]颜湘武,邓浩然,郭琪,等.基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J].电工技术学报,2019,34(18):3937-3948.(Yan Xiang-wu,Deng Hao-ran,Guo Qi,et al.Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization [J].Transactions of China Electrotechnical Society,2019,34(18):3937-3948.)