Effect of Al on Microstructure and Tensile Behavior of an Additive Manufacturing Nickel-Based Superalloy
ZHU Yu1,2, SONG Wei1, LIANG Jing-jing1, LI Jin-guo1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China.
ZHU Yu, SONG Wei, LIANG Jing-jing, LI Jin-guo. Effect of Al on Microstructure and Tensile Behavior of an Additive Manufacturing Nickel-Based Superalloy[J]. Journal of Northeastern University(Natural Science), 2023, 44(3): 348-356.
[1]Acharya R,Bansal R,Gambone J J,et al.A coupled thermal,fluid flow,and solidification model for the processing of single crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair(part I)[J].Metallurgical & Materials Transactions B,2014,45(6):2247-2261. [2]Arcella F G,Froes F H.Producing titanium aerospace components from powder using laser forming [J].JOM,2000,52(5):28-30. [3]Gel M,Duhl D N,Giamei A F.The development of single crystal superalloy turbine blades[C]//Superalloys 1980.1980:205-214. [4]王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690-2698.(Wang Hua-ming.Materials′ fundamental issues of laser additive manufacturing for high-performance large metallic components [J].Acta Aeronautica et Astronautica Sinica,2014,35(10):2690-2698.) [5]赵宇辉,王志国,龙雨,等.Inconel 625 镍基高温合金激光增材制造熔池温度影响因素研究[J].应用激光,2015(2):137-144.(Zhao Yu-hui,Wang Zhi-guo,Long Yu,et al.Factor of temperature of molten pool of Inconel 625 superalloy by laser additive manufacturing [J].Applied Laser,2015(2):137-144.) [6]Liu J.Formation of cross-sectional profile of a clad bead in coaxial laser cladding [J].Optics and Laser Technology,2007,39(8):1532-1536. [7]李嘉宁,陈传忠.激光熔覆技术在航空领域中的研究现状[J].特种加工新技术,2010(5):51-54.(Li Jia-ning,Chen Chuan-zhong.Research situation of laser cladding technology in aviation manufacturing [J].New Technologies of Special Machining,2010(5):51-54.) [8]傅戈雁,刘义伦,石世宏.激光熔覆层开裂行为的影响因素及控制方法[J].光学技术,2000(1):84-89.(Fu Ge-yan,Liu Yi-lun,Shi Shi-hong.Influence factors and control methods of laser cladding cracking [J].Optical Technique,2000(1):84-89.) [9]谢玉江,王茂才,王明生.高Al,Ti含量镍基高温合金激光、微弧火花表面熔焊处理研究进展及解决熔焊裂纹的途径[J].中国表面工程,2010(5):1-16.(Xie Yu-jiang,Wang Mao-cai,Wang Ming-sheng.Research progress of laser and micro arc spark surface fusion welding of nickel base superalloy with high Al and Ti content [J].China Surface Engineering,2010(5):1-16.) [10]陈智君,张群莉,楼程华,等.Inconel 738 激光熔覆层的裂纹控制方法[J].应用激光,2013(1):7-13.(Chen Zhi-jun,Zhang Qun-li,Lou Cheng-hua,et al.Crack control method of Inconel 738 laser cladding layer [J].Applied Laser,2013(1):7-13.) [11]Vitek J M,Babu S S,David S A,et al.Cracking behavior in nickel-based single crystal superalloy welds [C]//Proceedings of 7th International Conference on Trends in Welding Research.Pine Mountain,2005:16-20. [12]Lu L X,Sridhar N,Zhang Y W.Phase field simulation of powder bed-based additive manufacturing [J].Acta Materialia,2018,144:801-809. [13]吴剑涛,袁晓飞,宋圣玉,等.Al含量对一种高W铸造高温合金组织与持久性能的影响[J].稀有金属材料与工程,2021,50(4):1342-1349.(Wu Jian-tao,Yuan Xiao-fei,Song Sheng-yu,et al.Effect of Al content on microstructure and rupture properties of a high W cast superalloy [J].Rare Metal Materials and Engineering,2021,50(4):1342-1349.) [14]Tang Y B,Panwisawas C,Ghoussoub J N,et al.Alloys-by-design:application to new superalloys for additive manufacturing [J].Acta Materialia,2021,202:417-427. [15]Zhang X,Chen H,Xu L,et al.Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy [J].Material Design,2019,183:108105. [16]Dye D,Hunziker O,Reed R C.Numerical analysis of the weldability of superalloys [J].Acta Materialia,2001,49(4):683-697. [17]Chen Y,Zhang K,Huang J,et al.Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718 [J].Material Design,2016,90:586-594. [18]Rappaz M,Drezet J M,Gremaud M,et al.A new hot-tearing criterion [J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1999,30(2):449-455.(上接第347页) [11]Kong H J,Xu C,Bu C C,et al.Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions [J].Acta Materialia,2019,172:150-160. [12]Wang S,Yu H,Gu H,et al.Effect of trace ferrite on mechanical properties of a tempered HSLA steel [J].Materials Science & Engineering:A,2019,744:299-304. [13]Dong W C,Wen M Y,Pang H Y,et al.Effect of post-weld tempering on the microstructure and mechanical properties in the simulated HAZs of a high-strength-high-toughness combination marine engineering steel [J].Acta Metallurgica Sinica(English Letters),2020,33:391-402. [14]Zhu F,Chai F,Luo X B,et al.Strengthening and toughening mechanism of a Cu-bearing high-strength low-alloy steel with refined tempered martensite/bainite(M/B)matrix and minor inter-critical ferrite [J].Journal of Iron and Steel Research International,2021,28(4):464-478. [15]An F C,Wang J J,Zhao S X,et al.Tailoring cementite precipitation and mechanical properties of quenched and tempered steel by nickel partitioning between cementite and ferrite [J].Materials Science and Engineering:A,2020,802:140686. [16]Dhua S K,Ray A,Sarma D S.Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels [J].Materials Science and Engineering:A,2001,318:197-210. [17]Shahriari B,Vafaei R,Sharifi E M,et al.Aging behavior of a copper-bearing high-strength low-carbon steel [J].International Journal of Minerals,Metallurgy and Materials,2018,25:429-435. [18]Chen J,Li C S,Ren J Y,et al.Strength and toughness of Fe-1.2Mn-0.3Cr-1.4Ni-0.4Mo-C tempered steel plate in three cooling processes [J].Materials Science and Engineering:A,2019,754:178-189. [19]Fei Y,Shi H,Fan J,et al.An investigation of secondary carbides in the spray-formed high alloyed vanadis 4 steel during tempering [J].Materials Characterization,2008,59(7):883-889. [20]Mirzadeh H,Najafizadeh A.Aging kinetics of 17-4 PH stainless steel[J].Materials Chemistry and Physics,2009,116(1):119-124. [21]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006:119-133.(Yong Qi-long.Second phases in structural steels [M].Beijing:Metallurgical Industry Press,2006:119-133.) [22]Hu B,Rong X Q,Tian C,et al.Nanoscale precipitation and ultrafine retained austenite induced high strength-ductility combination in a newly designed low carbon Cu-bearing medium-Mn steel [J].Materials Science and Engineering:A,2021,822:141685.