Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (2): 234-243.DOI: 10.12068/j.issn.1005-3026.2024.02.011
• Resources & Civil Engineering • Previous Articles
Yu-meng WANG, Kai GUAN, Wan-cheng ZHU, Hong-lei LIU
Received:
2022-09-16
Online:
2024-02-15
Published:
2024-05-14
CLC Number:
Yu-meng WANG, Kai GUAN, Wan-cheng ZHU, Hong-lei LIU. Mining-Induced Surrounding Rock Instability and Surface Subsidence Based on Combination of In-situ Monitoring and Numerical Modelling[J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 234-243.
名称 | 块体密度/(g·cm-3) | 变形模量×10-4/MPa | 抗拉强度/MPa | 内聚力C/MPa | 内摩擦角 | 泊松比 |
---|---|---|---|---|---|---|
矿体 | 3.875 | 2.09 | 4.84 | 8.37 | 42.86 | 0.21 |
浅部围岩 | 2.72 | 0.10 | 0.1 | 0.26 | 35.06 | 0.26 |
深部围岩 | 2.72 | 5.20 | 5 | 13.00 | 35.06 | 0.26 |
破碎带 | 2.72 | 0.05 | 0.14 | 0.40 | 31 | 0.26 |
废石充填 | 2.72 | 2.11 | 2.4 | 6.25 | 35.06 | 0.26 |
胶结充填 | 2.02 | 0.12 | 0.4 | 0.93 | 40 | 0.28 |
Table 1 FLAC3D numerical simulation parameters
名称 | 块体密度/(g·cm-3) | 变形模量×10-4/MPa | 抗拉强度/MPa | 内聚力C/MPa | 内摩擦角 | 泊松比 |
---|---|---|---|---|---|---|
矿体 | 3.875 | 2.09 | 4.84 | 8.37 | 42.86 | 0.21 |
浅部围岩 | 2.72 | 0.10 | 0.1 | 0.26 | 35.06 | 0.26 |
深部围岩 | 2.72 | 5.20 | 5 | 13.00 | 35.06 | 0.26 |
破碎带 | 2.72 | 0.05 | 0.14 | 0.40 | 31 | 0.26 |
废石充填 | 2.72 | 2.11 | 2.4 | 6.25 | 35.06 | 0.26 |
胶结充填 | 2.02 | 0.12 | 0.4 | 0.93 | 40 | 0.28 |
浅部空区充填前塑性区体积×10-9/m3 | 浅部空区充填后塑性区体积×10-9/m3 | 增长率/% |
---|---|---|
1.605 4 | 1.605 64 | 0.015 |
Table 2 Plastic area volume before and after filling of shallow goaf
浅部空区充填前塑性区体积×10-9/m3 | 浅部空区充填后塑性区体积×10-9/m3 | 增长率/% |
---|---|---|
1.605 4 | 1.605 64 | 0.015 |
建(构)筑物 | 地表沉降数值计算结果/mm |
---|---|
副井 | -44.65 |
办公生活区 | -17.32 |
岩芯库 | -10.62 |
选厂、主井 | -25.104 |
炸药库 | -18.804 |
变电所 | -36.01 |
Table 3 Numerical calculation results of surface subsidence at each monitoring point
建(构)筑物 | 地表沉降数值计算结果/mm |
---|---|
副井 | -44.65 |
办公生活区 | -17.32 |
岩芯库 | -10.62 |
选厂、主井 | -25.104 |
炸药库 | -18.804 |
变电所 | -36.01 |
回采进程 | +808中段塑性区体积/m3 |
---|---|
浅部空区充填 | 0 |
+768中段回采—充填 | 12 438.1 |
+728中段回采—充填 | 17 522.6 |
+688中段回采—充填 | 19 726.8 |
+648中段回采—充填 | 20 005.1 |
+608中段回采—充填 | 20 349.7 |
+568中段回采—充填 | 20 691.5 |
+518中段回采—充填 | 20 814.6 |
+468中段回采—充填 | 20 880.8 |
+428中段回采—充填 | 20 880.8 |
+378中段回采—充填 | 20 880.8 |
+328中段回采—充填 | 20 880.8 |
+278中段回采—充填 | 20 880.8 |
Table 4 Volume of plastic zone along with deep ore body mining in the middle section of +808
回采进程 | +808中段塑性区体积/m3 |
---|---|
浅部空区充填 | 0 |
+768中段回采—充填 | 12 438.1 |
+728中段回采—充填 | 17 522.6 |
+688中段回采—充填 | 19 726.8 |
+648中段回采—充填 | 20 005.1 |
+608中段回采—充填 | 20 349.7 |
+568中段回采—充填 | 20 691.5 |
+518中段回采—充填 | 20 814.6 |
+468中段回采—充填 | 20 880.8 |
+428中段回采—充填 | 20 880.8 |
+378中段回采—充填 | 20 880.8 |
+328中段回采—充填 | 20 880.8 |
+278中段回采—充填 | 20 880.8 |
建(构)筑物 | 地表沉降值/mm |
---|---|
副井 | -0.16 |
办公生活区 | -0.23 |
岩芯库 | -1.35 |
选厂、主井 | -1.65 |
炸药库 | -0.008 |
变电所 | -0.03 |
Table 5 Surface subsidence value caused by mining and filling of deep ore body
建(构)筑物 | 地表沉降值/mm |
---|---|
副井 | -0.16 |
办公生活区 | -0.23 |
岩芯库 | -1.35 |
选厂、主井 | -1.65 |
炸药库 | -0.008 |
变电所 | -0.03 |
建(构)筑物 | 地表累积沉降值/mm | InSAR地表沉降监测结果/mm | 最大允许变形值/mm |
---|---|---|---|
副井 | -44.978 | -46 | -450 |
办公生活区 | -17.816 | -11 | -480 |
岩芯库 | -13.382 | -5 | -200 |
选厂、主井 | -28.969 | -27 | -270 |
炸药库 | -18.814 | -22 | -252 |
变电所 | -36.046 | -34 | -480 |
Table 6 FLAC3D numerical simulation results and InSAR surface deformation monitoring results
建(构)筑物 | 地表累积沉降值/mm | InSAR地表沉降监测结果/mm | 最大允许变形值/mm |
---|---|---|---|
副井 | -44.978 | -46 | -450 |
办公生活区 | -17.816 | -11 | -480 |
岩芯库 | -13.382 | -5 | -200 |
选厂、主井 | -28.969 | -27 | -270 |
炸药库 | -18.814 | -22 | -252 |
变电所 | -36.046 | -34 | -480 |
回采方案 | 最大主应力云图 |
---|---|
由西到东 | |
由东到西 |
Table 7 Maximum principal stress nephogram of two pillar recovery schemes
回采方案 | 最大主应力云图 |
---|---|
由西到东 | |
由东到西 |
建(构)筑物 | 自西向东 | 自东向西 |
---|---|---|
副井 | -0.172 | -0.172 |
办公生活区 | -0.278 | -0.278 |
岩芯库 | -1.433 | -1.433 |
选厂、主井 | -2.227 | -2.227 |
炸药库 | -0.001 4 | -0.001 4 |
变电所 | -0.032 7 | -0.032 7 |
Table 8 Surface subsidence value caused by two mining schemes
建(构)筑物 | 自西向东 | 自东向西 |
---|---|---|
副井 | -0.172 | -0.172 |
办公生活区 | -0.278 | -0.278 |
岩芯库 | -1.433 | -1.433 |
选厂、主井 | -2.227 | -2.227 |
炸药库 | -0.001 4 | -0.001 4 |
变电所 | -0.032 7 | -0.032 7 |
塑性破坏状态 | 自西向东 | 自东向西 |
---|---|---|
正在拉伸破坏 | 7.362 7e6 | 7.926 71e6 |
正在剪切破坏 | 5.336 12e7 | 5.429 84e7 |
已拉伸破坏 | 2.863 08e8 | 2.863 08e8 |
已剪切破坏 | 1.326 28e9 | 1.326 28e9 |
Table 9 Plastic zone volume of surrounding rock produced by two mining schemes
塑性破坏状态 | 自西向东 | 自东向西 |
---|---|---|
正在拉伸破坏 | 7.362 7e6 | 7.926 71e6 |
正在剪切破坏 | 5.336 12e7 | 5.429 84e7 |
已拉伸破坏 | 2.863 08e8 | 2.863 08e8 |
已剪切破坏 | 1.326 28e9 | 1.326 28e9 |
建(构)筑物 | 残矿回收后地表变形预测结果/mm | 最大允许变形值/mm |
---|---|---|
副井 | -45.15 | -450 |
办公生活区 | -18.094 | -480 |
岩芯库 | -14.815 | -200 |
选厂、主井 | -31.196 | -270 |
炸药库 | -18.815 | -252 |
变电所 | -36.079 | -480 |
Table 10 Prediction of accumulated surface subsidence value after residual ore recovery
建(构)筑物 | 残矿回收后地表变形预测结果/mm | 最大允许变形值/mm |
---|---|---|
副井 | -45.15 | -450 |
办公生活区 | -18.094 | -480 |
岩芯库 | -14.815 | -200 |
选厂、主井 | -31.196 | -270 |
炸药库 | -18.815 | -252 |
变电所 | -36.079 | -480 |
1 | 袁亮,姜耀东,王凯,等.我国关闭/废弃矿井资源精准开发利用的科学思考[J].煤炭学报,2018,43(1):14‑20. |
Yuan Liang, Jiang Yao‐dong, Wang Kai,et al.Precision exploitation and utilization of closed/abandoned mine resources in China[J].Journal of China Coal Society,2018,43(1):14-20. | |
2 | 关守安,李皓,金长宇,等.粗榆金矿地下开采覆岩运移规律数值模拟[J].东北大学学报(自然科学版),2020,41(3):402-407. |
Guan Shou‐an, Li Hao, Jin Chang‐yu,et al.Numerical simulation on overlying strata movement law in underground mining of Cuyu Gold Mine[J].Journal of Northeastern University(Natural Science),2020,41(3):402-407. | |
3 | Xu Z C, Xu W, Zhou P,et al.Research on coal mine goaf restoration based on stability of overlying rocks and numerical simulation analysis:a case study of Jingmen Garden Expo Park[J].Sustainability,2023,15(2):1464. |
4 | Pang L F, Liu W T, Zheng Q S,et al.Evaluation and analysis of metal mine filling based on numerical simulation and actual measurement[J].Environmental Earth Sciences,2021,80(16):505-529. |
5 | Zebker H A, Goldstein R M.Topographic mapping from interferometric synthetic aperture radar observations[J].Journal of Geophysical Research Solid Earth,1986,91(B5):4993-4999. |
6 | Gabriel A K, Goldstein R M, Zebker H A.Mapping small elevation changes over large areas:differential radar interferometry[J].Journal of Geophysical Research Solid Earth,1989,94(B7):9183-9191. |
7 | Pawluszek‐Filipiak K, Borkowski A.Integration of DInSAR and SBAS techniques to determine mining‐related deformations using Sentinel‐1 data:the case study of Rydutowy Mine in Poland[J].Remote Sensing,2020,12(2):242. |
8 | Wang Z Y, Zhang J X, Huang G M.Precise monitoring and analysis of the land subsidence in Jining coal mining area based on InSAR technique[J].Journal of China University of Mining & Technology,2014,43(1):169-174. |
9 | Wempen J M, McCarter M K.Comparison of L‐band and X‐band differential interferometric synthetic aperture radar for mine subsidence monitoring in central Utah[J].International Journal of Mining Science and Technology,2017,27(1):159-163. |
10 | Xu Z C, Xu W, Zhu Z H,et al.Research on monitoring and stability evaluation of ground subsidence in gypsum mine goaf[J].Frontiers in Environmental Science,2023,10:1097874. |
11 | Liu J, Ma F S, Guo J,et al.A preliminary analysis of the mining‐induced rock movement characteristics in the Xinli deposit of the Sanshandao gold mine[J].Frontiers in Earth Science,2023,10:1101807. |
12 | Guo J S, Ma L Q, Liu Z G,et al.Numerical simulation of longwall face mining stress evolution based on the nonlinear compression characteristics of goaf gangue[J].International Journal of Geomechanics,2023,23(8):04023120. |
13 | Zhang X D, Li W L, Li T Y,et al.Stability analysis and numerical simulation of foundation in old goaf under building load[J].Frontiers in Earth Science,2023,11:1063684. |
14 | Guo Y H, Luo L, Ma R,et al.Study on surface deformation and movement caused by deep continuous mining of steeply inclined ore bodies[J].Sustainability,2023,15(15):11815. |
15 | Wei X S, Wang Y Y, Jin Y C,et al.Study on the ground settlement regularity caused by deep caving method[J].Applied Mechanics and Materials,2014,670/671:907-911. |
16 | He L, Wu D, Ma L F.Numerical simulation and verification of goaf morphology evolution and surface subsidence in a mine[J].Engineering Failure Analysis,2023,144:106918. |
17 | Guo Q B, Guo G L, Lv X,et al.Strata movement and surface subsidence prediction model of dense solid backfilling mining[J].Environmental Earth Sciences,2016,75(21):1426. |
18 | 罗跃,罗斌,周琦忠,等.基于Flac~(3D)软件对徐州市镇北铁矿地表沉降原因及规律研究[J].能源技术与管理,2022,47(2):159-161. |
Luo Yue, Luo Bin, Zhou Qi‐zhong,et al.Research on the causes and patterns of surface subsidence in Zhenbei Iron Mine,Xuzhou City based on Flac~(3D) software[J].Energy Technology and Management,2022,47(2):159-161. | |
19 | 徐中华,王卫东.敏感环境下基坑数值分析中土体本构模型的选择[J].岩土力学,2010,31(1):258-264,326. |
Xu Zhong‐hua, Wang Wei‐dong. Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics,2010,31(1):258-264,326. | |
20 | Wei Z X, Dong J H, Zhao M,et al.Transient electromagnetic detection and numerical simulation analysis of the deformation characteristics of an old goaf in an alpine coal mine area[J].Frontiers in Earth Science,2023,11:1220142. |
21 | Li Y, Ren Y Q, Lei X H,et al.Numerical modeling and onsite detection analysis of upward mining feasibility of residual coal from multi‐gobs in close‐multiple coal seams[J].Mining,Metallurgy & Exploration,2023,40(4):1153-1169. |
22 | 赵迎贵,游勋,岳国均,等.基于FLAC3D的矿柱回收稳定性分析[J].金属矿山,2014(8):19-23. |
Zhao Ying‐gui, You Xun, Yue Guo‐jun,et al.Stability analysis of ore pillar recovery based on FLAC3D [J].Metal Mine,2014(8):19-23. | |
23 | 李超.大采高工作面过断层数值模拟与围岩控制技术[J].能源技术与管理,2019,44(6):80-82,161. |
Li Chao.Numerical simulation and surrounding rock control technology for large mining height working face passing through faults[J].Energy Technology and Management,2019,44(6):80-82,161. | |
24 | 雷大星,张耀平,邹雄刚.上覆岩层对巷道围岩影响规律的数值模拟分析[J].有色金属(矿山部分),2016,68(6):70-74,89. |
Lei Da‐xing, Zhang Yao‐ping, Zou Xiong‐gang.Numerical simulation on the influence between overlying rock and roadway wall rock[J].Nonferrous Metals(Mining Section),2016,68(6):70-74,89. |
[1] | HOU Jun-xu, YANG Tian-hong, MA Kai, ZHAO Yong. More Than 100 Million DOF Numerical Simulation Technique and Its Engineering Application [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1298-1308. |
[2] | WANG En-de, SHEN Jian, LI Bin, YUAN Kun. Accurate Detection of Goaf in Open-pit Iron Mine Based on 3D High-density Resistivity Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 996-1001. |
[3] | MENG Qing-you, YUAN Zhi-tao, YANG Jian-chao. Flocs Formation Mechanism in Hydrophobic Flocculation Flotation of Fine Wolframite [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 1002-1008. |
[4] | DUAN Shao-pei, LI Bao-kuan, MU Yong-hong, RONG Wen-jie. Numerical Simulation of Gas-Solid Heat Transfer and Moisture Evaporation in Preheating Shaft Kiln [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 626-634. |
[5] | ZHU Qing-feng, YAN Bo, FENG Zhi-xin, ZUO Yu-bo. Numerical Simulation and Experimental Investigation on Hot Rolling Process of 2195 Aluminum Alloy at Different Speeds [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 502-509. |
[6] | SHA Cheng-man, WANG Xing, YANG Hui-min. Seepage Model of Water-Filled Goaf Based on Fluid-Solid Interaction [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 551-557. |
[7] | ZHAO Wen , SUN Yuan, BAI Qian, XIA Yun-peng. Excavation Field Test and Parameters Optimization of the Transverse Pilot Tunnel with Small Diameter Tube Curtain Construction Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(3): 432-439. |
[8] | JIAO Shi-yan, LIAO Xiang-wei, MIN Yi, LIU Cheng-jun. Numerical Simulation of Ultrasonic Cavitation Behavior in 25%K2O-30%Na2O-45%SiO2 Slag [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1584-1590. |
[9] | ZHAO Wen, WANG Zhi-guo, WANG Zhao-peng, WANG Xin. Numerical Simulation of Soil Deformation During Jacking of Circular Steel Pipes with Flange Plates [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1490-1498. |
[10] | LIU Xiao-hong, WEN Zhi, XIAO Yong-li, LOU Guo-feng. Analysis of Slag Granulation Mechanism and Crushing Efficiency Under Gas Quenching [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1424-1430. |
[11] | WANG Hong-bo, ZHANG Yong, PANG Yi-hui. Rational Layout of Roadway for Downward Cross-Pillar Mining in Close Distance Coal Seams [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 100-109. |
[12] | WU Fei, LI Yi-neng, WANG Meng-hui. Research on Light-Curing Assisted Molding Process of Extrusion-based Ceramic 3D Printing [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1283-1290. |
[13] | YUAN Yang, XU Tao, ZHOU Guang-lei, LE Zhi-hua. Simulation Method of Damage and Fracture for Brittle Rock Based on Microplane Model and Regularization [J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1141-1148. |
[14] | LI Xue-jiao, YANG Hong-ying, ZHAO He-fei, HU Hong-sheng. Numerical Simulation Study on Gas Gathering Structure of Aluminum Reduction Cell [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 966-972. |
[15] | LYU Chao, SUN Ming-he, YIN Hong-xin, LIU Fang. Simulation Study on the Effect of Venturi Pyrolysis Reactor Structure on Flow Field [J]. Journal of Northeastern University(Natural Science), 2022, 43(6): 821-826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||