Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (3): 354-360.DOI: 10.12068/j.issn.1005-3026.2024.03.007
• Mechanical Engineering • Previous Articles Next Articles
Hu FENG, Ke-chen SONG(), Wen-qi CUI, Yun-hui YAN
Received:
2022-10-21
Online:
2024-03-15
Published:
2024-05-17
Contact:
Ke-chen SONG
About author:
SONG Ke-chen, E-mail: songkc@me.neu.edu.cnCLC Number:
Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning[J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360.
集合 | 缺陷 | ||
---|---|---|---|
Fold-1 | 红铁皮 | 铁皮灰 | 板系氧化皮 |
Fold-2 | 轧辊印 | 水污 | 夹杂 |
Fold-3 | 油污 | 孔洞 | 划痕 |
Table 1 Division of dataset
集合 | 缺陷 | ||
---|---|---|---|
Fold-1 | 红铁皮 | 铁皮灰 | 板系氧化皮 |
Fold-2 | 轧辊印 | 水污 | 夹杂 |
Fold-3 | 油污 | 孔洞 | 划痕 |
方法 | 1个支持集样本 | 5个支持集样本 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均交并比/% | 前景-背景交并比/% | 平均交并比/% | 前景-背景交并比/% | ||||||||
Fold-1 | Fold-2 | Fold-3 | 均值 | Fold-1 | Fold-2 | Fold-3 | 均值 | ||||
SCLNet | 53.3 | 38.0 | 46.4 | 45.9 | 75.9 | 55.6 | 39.2 | 47.5 | 47.4 | 76.5 | |
PFENet | 66.1 | 44.2 | 55.7 | 55.3 | 72.9 | 67.2 | 45.9 | 56.1 | 56.4 | 74.9 | |
HSNet | 61.4 | 43.1 | 58.7 | 54.4 | 73.3 | 63.8 | 46.3 | 58.9 | 56.3 | 74.4 | |
本文方法 | 68.1 | 43.7 | 60.0 | 57.3 | 73.9 | 68.3 | 43.4 | 58.0 | 56.6 | 74.8 |
Table 2 Comparative experiment of the methods for 1-shot and 5-shot
方法 | 1个支持集样本 | 5个支持集样本 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均交并比/% | 前景-背景交并比/% | 平均交并比/% | 前景-背景交并比/% | ||||||||
Fold-1 | Fold-2 | Fold-3 | 均值 | Fold-1 | Fold-2 | Fold-3 | 均值 | ||||
SCLNet | 53.3 | 38.0 | 46.4 | 45.9 | 75.9 | 55.6 | 39.2 | 47.5 | 47.4 | 76.5 | |
PFENet | 66.1 | 44.2 | 55.7 | 55.3 | 72.9 | 67.2 | 45.9 | 56.1 | 56.4 | 74.9 | |
HSNet | 61.4 | 43.1 | 58.7 | 54.4 | 73.3 | 63.8 | 46.3 | 58.9 | 56.3 | 74.4 | |
本文方法 | 68.1 | 43.7 | 60.0 | 57.3 | 73.9 | 68.3 | 43.4 | 58.0 | 56.6 | 74.8 |
方法 | 1个支持集样本 | 5个支持集样本 | |||
---|---|---|---|---|---|
平均交并比/% | 前景-背景交并比/% | 平均交并比/% | 前景-背景交并比/% | ||
基准 | 51.8 | 71.3 | 53.8 | 72.0 | |
基准+多尺度解码器 | 56.2 | 73.3 | 56.5 | 73.7 | |
基准+注意力机制 | 53.9 | 72.0 | 54.8 | 72.8 | |
基准+多尺度解码器+注意力机制 | 57.3 | 73.9 | 56.6 | 73.8 |
Table 3 Ablation experiment of the modules for 1-shot and 5-shot
方法 | 1个支持集样本 | 5个支持集样本 | |||
---|---|---|---|---|---|
平均交并比/% | 前景-背景交并比/% | 平均交并比/% | 前景-背景交并比/% | ||
基准 | 51.8 | 71.3 | 53.8 | 72.0 | |
基准+多尺度解码器 | 56.2 | 73.3 | 56.5 | 73.7 | |
基准+注意力机制 | 53.9 | 72.0 | 54.8 | 72.8 | |
基准+多尺度解码器+注意力机制 | 57.3 | 73.9 | 56.6 | 73.8 |
1 | Song G R, Song K C, Yan Y H.EDRNet:encoder‐decoder residual network for salient object detection of strip steel surface defects[J].IEEE Transactions on Instrumentation and Measurement,2020,69(12):9709-9719. |
2 | Song K C, Yan Y H.A noise robust method based on completed local binary patterns for hot‐rolled steel strip surface defects[J].Applied Surface Science,2013,285:858-864. |
3 | Zhou D H, Wei M H, Si X S.A survey on anomaly detection,life prediction and maintenance decision for industrial processes[J].Acta Automatica Sinica,2013,39(6):711-722. |
4 | Luo Q W, Fang X, Su J,et al.Automated visual defect classification for flat steel surface:a survey[J].IEEE Transactions on Instrumentation and Measurement,2020,69(12):9329-9349. |
5 | 周鹏,徐科,杨朝霖.基于SIFT的中厚板表面缺陷识别方法[J].清华大学学报(自然科学版),2018,58(10):881-887. |
Zhou Peng, Xu Ke, Yang Chao‑lin.Surface defect recognition for moderately thick plates based on a SIFT operator[J].Journal of Tsinghua University (Science and Technology),2018,58(10):881-887. | |
6 | Chu M X, Gong R F, Gao S,et al.Steel surface defects recognition based on multi‑type statistical features and enhanced twin support vector machine[J].Chemometrics and Intelligent Laboratory Systems,2017,171:140-150. |
7 | 张德富,宋克臣,牛孟辉,等.基于一维卷积的生产线冷态重轨表面缺陷快速检测[J].东北大学学报(自然科学版),2021,42(2):276-281. |
Zhang De‐fu, Song Ke‐chen, Niu Meng‐hui, al el.Rapid detection of cold heavy rail surface defects of production line based on one‐dimensional convolution network[J].Journal of Northeastern University (Natural Science),2021,42(2):276-281. | |
8 | 何彧,宋克臣,张德富,等.融合多层级特征的弱监督钢板表面缺陷检测方法[J].东北大学学报(自然科学版),2021,42(5):687-692. |
He Yu, Song Ke‑chen, Zhang De‑fu,et al.Weakly‑supervised steel plate surface defect detection algorithm by integrating multiple level features[J].Journal of Northeastern University (Natural Science),2021,42(5):687-692. | |
9 | Bao Y Q, Song K C, Liu J,et al.Triplet‐graph reasoning network for few‐shot metal generic surface defect segmentation[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11. |
10 | Cha Y J, Choi W, Suh G,et al.Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types[J].Computer Aided Civil and Infrastructure Engineering,2018,33(9):731-747. |
11 | Long J, Shelhamer E, Darrell T.Fully convolutional networks for semantic segmentation[C]//Conference on Computer Vision and Pattern Recognition (CVPR).Boston,2015:3431-3440. |
12 | Zhang B F, Xiao J M, Qin T.Self‐guided and cross‐guided learning for few‐shot segmentation[C]//Conference on Computer Vision and Pattern Recognition (CVPR).Kuala Lumpur,2021:8312-8321. |
13 | Tian Z T, Zhao H S, Shu M,et al.Prior guided feature enrichment network for few‐shot segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(2):1050-1065. |
14 | Min J H, Kang D, Cho M.Hypercorrelation squeeze for few‐shot segmentation[C]//International Conference on Computer Vision (ICCV).Montreal,2021:6941-6952. |
15 | Dong N Q, Xing E P.Few‐shot semantic segmentation with prototype learning[C]//British Machine Vision Conference (BMVC).Newcastle,2018:1-13. |
16 | Feng X L, Gao X W, Luo L.X‐SDD:a new benchmark for hot rolled steel strip surface defects detection[J].Symmetry,2021,13(4):706-723. |
17 | Lyu X, Duan F, Jiang J,et al.Deep metallic surface defect detection:The new benchmark and detection network[J].Sensors,2020,20(6).1562-1578. |
18 | Russakovsky O, Deng J, Su H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. |
19 | He K M, Zhang X Y, Ren S Q,et al.Deep residual learning for image recognition[C]//Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,2016:770-778. |
20 | Woo S, Park J, Lee J Y,et al.CBAM:convolutional block attention module[C]//European Conference on Computer Vision (ECCV).Munich,2018:3-19. |
[1] | Ying SUN, Ya-ru ZHOU, Xue-ying ZHANG. Speech Emotion Recognition Fusing Functional Paralanguage Proportion Coefficient [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 40-48. |
[2] | JIANG Yang, LIU Cheng, DING Qi-chuan, WANG Li. Segmentation of COVID-19 CT Images Based on Dual Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1259-1268. |
[3] | ZHOU Song, GAO Tian-han. EEG Recognition Method for Epileptic Patients Based on RNN Model with Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1098-1103. |
[4] | DING Qi-chuan, WANG Li, LIU Cheng. Classification of Pulmonary Nodule by Combining Long-Distance Channel Attention and Pathological Feature [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 476-485. |
[5] | CHEN Cheng, SHI Pei-xin, WANG Zhan-sheng, JIA Peng-jiao. Shield Load Prediction Method Based on Deep Learning with Multiattention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1631-1638. |
[6] | LIN Qing-yang, CHEN Xiao-fang, XIE Yong-fang. An Superheat Identification Method in Aluminium Electrolysis Based on Residual Convolutional Self-Attention Neural Network [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 8-17. |
[7] | LIU Yang, YAN Dong-mei, MENG Fan-wei. Improved Two-Branch Person Re-identification Algorithm Based on Transformer [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 26-32. |
[8] | DAI Yin, LIU Wei-bin, DONG Xin-yang, SONG Yu-meng. U-Net CSF Cells Segmentation Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 944-950. |
[9] | YU Zhe-zhou, LIU Yan, LIU Yuan-ning. Improved Iris Locating Algorithm Based on YOLOV3 [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 496-501. |
[10] | LI Da-peng, ZHAO Qi-hui, XING Tie-jun, ZHAO Da-zhe. Prison Term Prediction of Judicial Cases Based on Hierarchical Attentive Recurrent Neural Network [J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 344-349. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 613
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 784
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||