1 |
Song G R, Song K C, Yan Y H.EDRNet:encoder‐decoder residual network for salient object detection of strip steel surface defects[J].IEEE Transactions on Instrumentation and Measurement,2020,69(12):9709-9719.
|
2 |
Song K C, Yan Y H.A noise robust method based on completed local binary patterns for hot‐rolled steel strip surface defects[J].Applied Surface Science,2013,285:858-864.
|
3 |
Zhou D H, Wei M H, Si X S.A survey on anomaly detection,life prediction and maintenance decision for industrial processes[J].Acta Automatica Sinica,2013,39(6):711-722.
|
4 |
Luo Q W, Fang X, Su J,et al.Automated visual defect classification for flat steel surface:a survey[J].IEEE Transactions on Instrumentation and Measurement,2020,69(12):9329-9349.
|
5 |
周鹏,徐科,杨朝霖.基于SIFT的中厚板表面缺陷识别方法[J].清华大学学报(自然科学版),2018,58(10):881-887.
|
|
Zhou Peng, Xu Ke, Yang Chao‑lin.Surface defect recognition for moderately thick plates based on a SIFT operator[J].Journal of Tsinghua University (Science and Technology),2018,58(10):881-887.
|
6 |
Chu M X, Gong R F, Gao S,et al.Steel surface defects recognition based on multi‑type statistical features and enhanced twin support vector machine[J].Chemometrics and Intelligent Laboratory Systems,2017,171:140-150.
|
7 |
张德富,宋克臣,牛孟辉,等.基于一维卷积的生产线冷态重轨表面缺陷快速检测[J].东北大学学报(自然科学版),2021,42(2):276-281.
|
|
Zhang De‐fu, Song Ke‐chen, Niu Meng‐hui, al el.Rapid detection of cold heavy rail surface defects of production line based on one‐dimensional convolution network[J].Journal of Northeastern University (Natural Science),2021,42(2):276-281.
|
8 |
何彧,宋克臣,张德富,等.融合多层级特征的弱监督钢板表面缺陷检测方法[J].东北大学学报(自然科学版),2021,42(5):687-692.
|
|
He Yu, Song Ke‑chen, Zhang De‑fu,et al.Weakly‑supervised steel plate surface defect detection algorithm by integrating multiple level features[J].Journal of Northeastern University (Natural Science),2021,42(5):687-692.
|
9 |
Bao Y Q, Song K C, Liu J,et al.Triplet‐graph reasoning network for few‐shot metal generic surface defect segmentation[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11.
|
10 |
Cha Y J, Choi W, Suh G,et al.Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types[J].Computer Aided Civil and Infrastructure Engineering,2018,33(9):731-747.
|
11 |
Long J, Shelhamer E, Darrell T.Fully convolutional networks for semantic segmentation[C]//Conference on Computer Vision and Pattern Recognition (CVPR).Boston,2015:3431-3440.
|
12 |
Zhang B F, Xiao J M, Qin T.Self‐guided and cross‐guided learning for few‐shot segmentation[C]//Conference on Computer Vision and Pattern Recognition (CVPR).Kuala Lumpur,2021:8312-8321.
|
13 |
Tian Z T, Zhao H S, Shu M,et al.Prior guided feature enrichment network for few‐shot segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(2):1050-1065.
|
14 |
Min J H, Kang D, Cho M.Hypercorrelation squeeze for few‐shot segmentation[C]//International Conference on Computer Vision (ICCV).Montreal,2021:6941-6952.
|
15 |
Dong N Q, Xing E P.Few‐shot semantic segmentation with prototype learning[C]//British Machine Vision Conference (BMVC).Newcastle,2018:1-13.
|
16 |
Feng X L, Gao X W, Luo L.X‐SDD:a new benchmark for hot rolled steel strip surface defects detection[J].Symmetry,2021,13(4):706-723.
|
17 |
Lyu X, Duan F, Jiang J,et al.Deep metallic surface defect detection:The new benchmark and detection network[J].Sensors,2020,20(6).1562-1578.
|
18 |
Russakovsky O, Deng J, Su H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
|
19 |
He K M, Zhang X Y, Ren S Q,et al.Deep residual learning for image recognition[C]//Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,2016:770-778.
|
20 |
Woo S, Park J, Lee J Y,et al.CBAM:convolutional block attention module[C]//European Conference on Computer Vision (ECCV).Munich,2018:3-19.
|