
Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (6): 776-785.DOI: 10.12068/j.issn.1005-3026.2024.06.003
• Information & Control • Previous Articles
Dong-hong HAN1, Yan-ru KONG2(
), Yi-meng ZHAN1, Yuan LIU1
Received:2023-02-09
Online:2024-06-15
Published:2024-09-18
Contact:
Yan-ru KONG
About author:KONG Yan-ru, Email: kong19960103@163.comCLC Number:
Dong-hong HAN, Yan-ru KONG, Yi-meng ZHAN, Yuan LIU. Research on Emotion Recognition Method of Music Multimodal Data[J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 776-785.
| 词汇 | Happy | Anxious | Sad | Relaxed |
|---|---|---|---|---|
| Happy | — | 0.368 | 0.326 | 0.329 |
| Anxious | 0.368 | — | 0.416 | 0.276 |
| Sad | 0.326 | 0.416 | — | 0.341 |
| Relaxed | 0.329 | 0.276 | 0.341 | — |
Table 1 Lexical similarity
| 词汇 | Happy | Anxious | Sad | Relaxed |
|---|---|---|---|---|
| Happy | — | 0.368 | 0.326 | 0.329 |
| Anxious | 0.368 | — | 0.416 | 0.276 |
| Sad | 0.326 | 0.416 | — | 0.341 |
| Relaxed | 0.329 | 0.276 | 0.341 | — |
| 情感类别 | V +A+ | V -A+ | V -A- | V +A- |
|---|---|---|---|---|
| 单词数 | 199 | 133 | 48 | 119 |
Table 2 Distribution of sentiment dictionary vocabulary
| 情感类别 | V +A+ | V -A+ | V -A- | V +A- |
|---|---|---|---|---|
| 单词数 | 199 | 133 | 48 | 119 |
输入:经过整理后的社交标签集Tag 输出:社交标签分布表 |
|---|
1) Begin 2) 由社交标签集Tag生成初始社交标签分布表 3) 读取标签汇总集T中的每个社交标签ti 4) For eachti inT 5) 若ti 在Tag的3个或4个子集中出现: 6) 从初始社交标签分布表中删除所有ti 7) 若ti 在社交标签集Tag的两个子集中出现: 8) 将ti 加入临时集合Temp 9) Endfor 10) 读取临时集合Temp中的每个社交标签ta i 11) For each ta i in Temp 12) 判断ta i 出现的位置,将其从靠后位置对应的 初始社交标签分布表中删除 13) Endfor 14) 获得社交标签分布表 15) End |
Table 3 Social tag distribution analysis algorithm
输入:经过整理后的社交标签集Tag 输出:社交标签分布表 |
|---|
1) Begin 2) 由社交标签集Tag生成初始社交标签分布表 3) 读取标签汇总集T中的每个社交标签ti 4) For eachti inT 5) 若ti 在Tag的3个或4个子集中出现: 6) 从初始社交标签分布表中删除所有ti 7) 若ti 在社交标签集Tag的两个子集中出现: 8) 将ti 加入临时集合Temp 9) Endfor 10) 读取临时集合Temp中的每个社交标签ta i 11) For each ta i in Temp 12) 判断ta i 出现的位置,将其从靠后位置对应的 初始社交标签分布表中删除 13) Endfor 14) 获得社交标签分布表 15) End |
| V +A+ | V -A+ | V -A- | V +A- |
|---|---|---|---|
| happy | heartbreak | sad | chillout |
| upbeat | angry | soft | soul |
| fun | epic | acoustic | smooth |
| party | heartache | emotional | relax |
| catchy | aggressive | dark | relaxing |
Table 4 Social tag distribution
| V +A+ | V -A+ | V -A- | V +A- |
|---|---|---|---|
| happy | heartbreak | sad | chillout |
| upbeat | angry | soft | soul |
| fun | epic | acoustic | smooth |
| party | heartache | emotional | relax |
| catchy | aggressive | dark | relaxing |
| 类别 | 模型 | Accuracy | Marco-F1 |
|---|---|---|---|
| 对比实验 | 手工特征+神经网络 | 0.383 2 | 0.388 4 |
| MFCC+SVM | 0.551 1 | 0.538 6 | |
| MFCC+SVM | 0.554 7 | 0.519 4 | |
| MFCC+DBM | 0.551 1 | 0.594 4 | |
| 消融实验 | ERMSLM | 0.463 5 | 0.489 5 |
| ERMSLM | 0.547 4 | 0.597 2 | |
| ERMSLM | 0.569 3 | 0.599 9 |
Table 5 Contrast and ablation experiment results
| 类别 | 模型 | Accuracy | Marco-F1 |
|---|---|---|---|
| 对比实验 | 手工特征+神经网络 | 0.383 2 | 0.388 4 |
| MFCC+SVM | 0.551 1 | 0.538 6 | |
| MFCC+SVM | 0.554 7 | 0.519 4 | |
| MFCC+DBM | 0.551 1 | 0.594 4 | |
| 消融实验 | ERMSLM | 0.463 5 | 0.489 5 |
| ERMSLM | 0.547 4 | 0.597 2 | |
| ERMSLM | 0.569 3 | 0.599 9 |
| 类别 | 模型 | Accuracy | Marco-F1 |
|---|---|---|---|
| 对比实验 | TFIDF+KNN | 0.534 2 | 0.462 6 |
| BOW+DBM | 0.551 1 | 0.594 4 | |
| 消融实验 | ERMBT | 0.551 1 | 0.594 4 |
| ERMBT | 0.715 3 | 0.743 4 | |
| ERMBT | 0.726 2 | 0.794 7 |
Table 6 Contrast and ablation experiment results
| 类别 | 模型 | Accuracy | Marco-F1 |
|---|---|---|---|
| 对比实验 | TFIDF+KNN | 0.534 2 | 0.462 6 |
| BOW+DBM | 0.551 1 | 0.594 4 | |
| 消融实验 | ERMBT | 0.551 1 | 0.594 4 |
| ERMBT | 0.715 3 | 0.743 4 | |
| ERMBT | 0.726 2 | 0.794 7 |
| 模型名称 | V+A+ | V-A+ | V-A- | V+A- | 四类均值 |
|---|---|---|---|---|---|
| ERMSLM | 0.538 0 | 0.55 | 0.636 4 | 0.5 | 0.569 3 |
| ERMBT | 0.722 6 | 0.75 | 0.848 5 | 0.6 | 0.726 2 |
| FF-ERM | 0.711 5 | 0.70 | 0.787 9 | 0.6 | 0.708 0 |
| DF-ERM | 0.737 2 | 0.75 | 0.878 8 | 0.7 | 0.737 2 |
Table 7 Accuracy on each sentiment category
| 模型名称 | V+A+ | V-A+ | V-A- | V+A- | 四类均值 |
|---|---|---|---|---|---|
| ERMSLM | 0.538 0 | 0.55 | 0.636 4 | 0.5 | 0.569 3 |
| ERMBT | 0.722 6 | 0.75 | 0.848 5 | 0.6 | 0.726 2 |
| FF-ERM | 0.711 5 | 0.70 | 0.787 9 | 0.6 | 0.708 0 |
| DF-ERM | 0.737 2 | 0.75 | 0.878 8 | 0.7 | 0.737 2 |
| 1 | Han D H, Kong Y R, Han J Y,et al.A survey of music emotion recognition[J].Frontiers of Computer Science,2022,16(6):166335. |
| 2 | Jazi S Y, Kaedi M, Fatemi A.An emotion‑aware music recommender system:bridging the user’s interaction and music recommendation[J].Multimedia Tools and Application,2021,80(9):13559-13574. |
| 3 | Dharmapriya J, Dayarathne L, Diasena T,et al.Music emotion visualization through colour[C]//2021 International Conference on Electronics,Information,and Communication (ICEIC).Jeju,2021:1-6. |
| 4 | Novelli N, Proksch S.Am I (deep) blue?music‑making AI and emotional awareness[J].Frontiers in Neurorobotics,2022,16:897110. |
| 5 | Shukuroglou M, Roseman L, Wall M,et al.Changes in music‑evoked emotion and ventral striatal functional connectivity after psilocybin therapy for depression[J].Journal of Psychopharmacology,2023,37(1):70-79. |
| 6 | 陈晓鸥,杨德顺.音乐情感识别研究进展[J].复旦学报(自然科学版),2017,56(2):136-148. |
| Chen Xiao‑ou, Yang De‑shun.Research progresses in music emotion recognition[J].Journal of Fudan University (Natural Science),2017,56(2):136-148. | |
| 7 | Panda R, Malheiro R, Paiva R P.Novel audio features for music emotion recognition[J].IEEE Transactions on Affective Computing,2020,11(4):614-626. |
| 8 | Singh Y, Biswas A.Robustness of musical features on deep learning models for music genre classification[J].Expert Systems with Applications,2022,199:116879. |
| 9 | 邓永莉,吕愿愿,刘明亮,等.基于中高层特征的音乐情感识别模型[J].计算机工程与设计,2017,38(4):1029-1034. |
| Deng Yong‑li, Yuan‑yuan Lyu, Liu Ming‑liang,et al.Music emotion recognition based on middle and high level features[J].Computer Engineering and Design,2017,38(4):1029-1034. | |
| 10 | Qiu L, Zhong Y, Xie Q,et al.Multi‑modal integration of EEG-fNIRS for characterization of brain activity evoked by preferred music[J].Frontiers in Neurorobotics,2022,16:823435. |
| 11 | Delbouys R, Hennequin R, Piccoli F,et al.Music mood detection based on audio and lyrics with deep neural net[C]//Proceedings of the 19th International Society for Music Information Retrieval Conference(ISMIR).Paris,2018:370-375. |
| 12 | Jia X S.A music emotion classification model based on the improved convolutional neural network[J].Computational Intelligence and Neuroscience,2022,2022:6749622. |
| 13 | Liu X, Chen Q, Wu X,et al.CNN based music emotion classification[J].arXiv prePrint arXiv,2017:1704.05665. |
| 14 | Keelawat P, Thammasan N, Kijsirikul B,et al.Subject‐independent emotion recognition during music listening based on EEG using deep convolutional neural networks[C]//2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA).Penang,2019:21-26. |
| 15 | Chowdhury S, Vall A, Haunscmid V,et al.Towards explainable music emotion recognition:the route via mid‑level features[C]//Proceedings of the 20th International Society for Music Information Retrieval Conference(ISMIR).Delft,2019:237-243. |
| 16 | Ma Y, Li X X, Xu M X,et al.Multi‑scale context based attention for dynamic music emotion prediction[C]//Proceedings of the 25th ACM international conference on Multimedia.Mountain View,2017:1443-1450. |
| 17 | Liu H, Fang Y, Huang Q.Music emotion recognition using a variant of recurrent neural network[C]//Proceedings of the International Conference on Mathematics,Modeling,Simulation and Statistics Application(MMSSA).Chengdu,2018:15-18. |
| 18 | Chang W H, Li J L, Lin Y S,et al.A genre‑affect relationship network with task‑specific uncertainty weighting for recognizing induced emotion in music[C]//2018 IEEE International Conference on Multimedia and Expo (ICME).San Diego,2018:1-6. |
| 19 | Soleymani M, Aljanaki A, Yang Y,et al.Emotional analysis of music:a comparison of methods[C]//Proceedings of the ACM Conference on Multimedia(MM).Orlando:ACM,2014:1161-1164. |
| 20 | Li X X, Tian J S, Xu M X,et al.DBLSTM‑based multi‐scale fusion for dynamic emotion prediction in music[C]//2016 IEEE International Conference on Multimedia and Expo (ICME).Seattle,2016:1-6. |
| 21 | Chaki S, Doshi P, Patnaik P,et al.Attentive RNNs for continuous‑time emotion prediction in music clips[C]//Proceedings of the 3rd Workshop in Affective Content Analysis co‑located with Thirty‑Fourth AAAI Conference on Artificial Intelligence.New York:AAAI,2020:36-46. |
| 22 | 韩文静,李海峰,阮华斌,等.语音情感识别研究进展综述[J].软件学报,2014,25(1):37-50. |
| Han Wen‑jing, Li Hai‑feng, Ruan Hua‑bin,et al.Review on speech emotion recognition[J].Journal of Software,2014,25(1):37-50. | |
| 23 | Zaanen M V, Kanters P.Automatic mood classification using TF*IDF based on lyrics[C]//Proceedings of the 11th International Society for Music Information Retrieval Conference(ISMIR).Utrecht,2010:75-80. |
| 24 | Wang X, Chen X, Yang D,et al.Music emotion classification of Chinese songs based on lyrics using TF*IDF and rhyme[C]//Proceedings of the 12th International Society for Music Information Retrieval Conference(ISMIR).Miami,2011:765-770. |
| 25 | Xie Z W, Liu L, Wu Y Z,et al.Learning TFIDF enhanced joint embedding for recipe‑image cross‑modal retrieval service[J].IEEE Transactions on Services Computing,2022,15(6):3304-3316. |
| 26 | Chen P L, Zhao L, Xin Z Y,et al.A scheme of MIDI music emotion classification based on fuzzy theme extraction and neural network[C]//2016 12th International Conference on Computational Intelligence and Security (CIS).Wuxi,2016:323-326. |
| 27 | Huang M Y, Rong W G, Arjannikov T,et al.Bi‑modal deep boltzmann machine based musical emotion classification[C]//International Conference on Artificial Neural Networks.Cham:Springer,2016:199-207. |
| [1] | Wei-qi ZHANG, Hui-ming WANG. Interpretable Deep Learning Prediction Model for Compressive Strength of Concrete [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 738-744. |
| [2] | Guang-lei XIA, Zhao-xia WU, Meng-yuan LIU, Yu-shan JIANG. Prediction of Sinter Chemical Indexes Based on GMM-KNN-LSTM [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 314-322. |
| [3] | WEI Jian-yi, WU Jing-jing. Resource Allocation Algorithm in Industrial Internet of Things Based on Edge Computing [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1072-1078. |
| [4] | YANG Xuan, HE Zhan-qi. Improved Two-layer BiLSTM Electrocardiosignal Segmentation Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1705-1711. |
| [5] | JI Ce, WANG Xin, GENG Rong, LIANG Min-jun. LSTM-Based Channel Estimation Method in Time-Varying Channels [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1521-1528. |
| [6] | CHEN Cheng, SHI Pei-xin, WANG Zhan-sheng, JIA Peng-jiao. Shield Load Prediction Method Based on Deep Learning with Multiattention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1631-1638. |
| [7] | LIU Wei-wei, DENG Jian-yang, ZHANG Jing-wen, NIU Dong-dong. Classification and Identification of Excavators’ Working Stages Based on Deep Learning [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1464-1474. |
| [8] | LI Juan-li, WEI Dai-liang, LI Bo, WEN Xiao. Improved SSD Rapid Separation Model of Coal Gangue Based on Deep Learning and Light-Weighting [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1474-1480. |
| [9] | ZHAO Yong, JIAO Shi-hui, ZHAO Qian-bai. Hybrid Recognition Model of Microseismic Signals for Mining Based on Mel Spectrum and LSTM-DCNN [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1481-1489. |
| [10] | ZHANG Xue-feng, WANG Zhao-yi. Automatic Lane Change Decision Model Based on Dueling Double Deep Q-network [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1369-1376. |
| [11] | WANG Ying, WANG Ze-hao, LI Hong, HUANG Wen-jun. Named Entity Recognition in Threat Intelligence Domain Based on Deep Learning [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 33-39. |
| [12] | MA Yuan-yuan, LIU Yan-ze, LIU Cheng-long, ZHANG Tian-jie. Chinese Investors’ Multi-perspective Sentiment Analysis and Its Role in Stock Market Forecasting [J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1201-1209. |
| [13] | GU De-ying, LUO Yu-lun, LI Wen-chao. Traffic Target Detection in Complex Scenes Based on Improved YOLOv5 Algorithm [J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1073-1079. |
| [14] | DAI Yin, LIU Wei-bin, DONG Xin-yang, SONG Yu-meng. U-Net CSF Cells Segmentation Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 944-950. |
| [15] | LI Hong-ru, REN Zi-yang, HUANG You-he, YU Xia. Recognition Method of Arrhythmia Based on Variable Weight Singular Spectrum Analysis [J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 305-312. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||