Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (6): 890-896.DOI: 10.12068/j.issn.1005-3026.2024.06.018
• Resources & Civil Engineering • Previous Articles
Xi-wen YAO, Qing-hua LIU, Hao-dong ZHOU, Kai-li XU()
Received:
2023-02-17
Online:
2024-06-15
Published:
2024-09-18
Contact:
Kai-li XU
About author:
XU Kai-li, E-mail: kaili_xu@ aliyun.comCLC Number:
Xi-wen YAO, Qing-hua LIU, Hao-dong ZHOU, Kai-li XU. Tar Cracking Removal Technology in Biomass Gasification Process[J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 890-896.
杂质 | 单位 | 内燃机 | 燃气轮机 |
---|---|---|---|
颗粒物 | mg/m3 | <50 | <30 |
粒度 | μm | <10 | <5 |
焦油 | mg/m3 | <100 | <5 |
碱金属 | mg/m3 | <0.24 |
Table 1 Syngas quality requirements for different
杂质 | 单位 | 内燃机 | 燃气轮机 |
---|---|---|---|
颗粒物 | mg/m3 | <50 | <30 |
粒度 | μm | <10 | <5 |
焦油 | mg/m3 | <100 | <5 |
碱金属 | mg/m3 | <0.24 |
类别 | 名称 | 特性 | 特征化合物 |
---|---|---|---|
1 | 气相色谱不能检出 | 重质焦油混合物 | 无 |
2 | 杂环芳烃 | 高水溶性 | 甲酚、吡啶、喹啉、苯酚、二苯并苯酚、异喹啉 |
3 | 轻芳香族(1环) | 不容易凝结 | 甲苯、二甲苯、苯乙烯、乙苯 |
4 | 轻环芳烃(2~3环) | 2和3环化合物;低浓度时在低温下可凝结 | 茚、萘、甲基萘、联苯、苊、芴、菲、蒽 |
5 | 重环芳烃(4~7环) | 氟蒽、芘、、二萘嵌苯、蔻 |
Table 2 Tar type classification and characterization
类别 | 名称 | 特性 | 特征化合物 |
---|---|---|---|
1 | 气相色谱不能检出 | 重质焦油混合物 | 无 |
2 | 杂环芳烃 | 高水溶性 | 甲酚、吡啶、喹啉、苯酚、二苯并苯酚、异喹啉 |
3 | 轻芳香族(1环) | 不容易凝结 | 甲苯、二甲苯、苯乙烯、乙苯 |
4 | 轻环芳烃(2~3环) | 2和3环化合物;低浓度时在低温下可凝结 | 茚、萘、甲基萘、联苯、苊、芴、菲、蒽 |
5 | 重环芳烃(4~7环) | 氟蒽、芘、、二萘嵌苯、蔻 |
催化剂名称 | 优点 | 缺点 |
---|---|---|
纯碱 | 1. 廉价且原料丰富 | 易碎物料,流化床腐蚀快 |
2.焦油转化率较高,白云石可达95% | ||
3. 可用作价格昂贵的焦油脱除的保护床 | ||
橄榄石 | 1. 廉价 | 催化活性低于白云石 |
2. 耐磨性良好 | ||
黏土矿物 | 1. 价格便宜,原料丰富 2.较少的废物处理问题 | 1. 催化活性低于白云石 |
2. 大多数天然黏土不支持焦油脱除所需的高温(800~850 ℃),高温下黏土失去孔隙结构 | ||
铁矿石 | 廉价且原料丰富 | 1. 在没有氢的情况下迅速失活 |
2. 催化活性低于白云石 | ||
炭颗粒 | 1. 廉价且原料丰富 | 1. 气化反应消耗部分炭 |
2. 可持续(气化炉内产生) | ||
3. 与白云石相比,焦油转化率高 | 2. 性质不固定,取决于生物质类型和工艺条件 | |
4.中性或弱碱性质 | ||
流动裂解催化剂 | 1. 相对廉价,但比上述催化剂价格贵 | 1. 易造成焦炭快速失活 |
2.其应用具有更多的经验 | 2. 催化活性低于白云石 | |
碱金属基 | 1. 可在气化炉中生产 | 1. 颗粒在高温下团聚 |
2. 减少碱金属造成的飞灰问题 | 2. 催化活性低于白云石 | |
活性氧化铝 | 与白云石相比具有较高的焦油转化率 | 易造成焦炭快速失活 |
过渡金属基 | 1. 焦油在900 ℃内可以完全脱除 | 1. 容易失活 |
2.提高CO2和H2的产率 | 2. 价格偏贵 | |
3. 具有更高的焦油重整活性(镍基催化剂的活性是白云石的8~10倍) | 3. 容易再生 |
Table 3 Summary of advantages and disadvantages of various catalyst for tar removal
催化剂名称 | 优点 | 缺点 |
---|---|---|
纯碱 | 1. 廉价且原料丰富 | 易碎物料,流化床腐蚀快 |
2.焦油转化率较高,白云石可达95% | ||
3. 可用作价格昂贵的焦油脱除的保护床 | ||
橄榄石 | 1. 廉价 | 催化活性低于白云石 |
2. 耐磨性良好 | ||
黏土矿物 | 1. 价格便宜,原料丰富 2.较少的废物处理问题 | 1. 催化活性低于白云石 |
2. 大多数天然黏土不支持焦油脱除所需的高温(800~850 ℃),高温下黏土失去孔隙结构 | ||
铁矿石 | 廉价且原料丰富 | 1. 在没有氢的情况下迅速失活 |
2. 催化活性低于白云石 | ||
炭颗粒 | 1. 廉价且原料丰富 | 1. 气化反应消耗部分炭 |
2. 可持续(气化炉内产生) | ||
3. 与白云石相比,焦油转化率高 | 2. 性质不固定,取决于生物质类型和工艺条件 | |
4.中性或弱碱性质 | ||
流动裂解催化剂 | 1. 相对廉价,但比上述催化剂价格贵 | 1. 易造成焦炭快速失活 |
2.其应用具有更多的经验 | 2. 催化活性低于白云石 | |
碱金属基 | 1. 可在气化炉中生产 | 1. 颗粒在高温下团聚 |
2. 减少碱金属造成的飞灰问题 | 2. 催化活性低于白云石 | |
活性氧化铝 | 与白云石相比具有较高的焦油转化率 | 易造成焦炭快速失活 |
过渡金属基 | 1. 焦油在900 ℃内可以完全脱除 | 1. 容易失活 |
2.提高CO2和H2的产率 | 2. 价格偏贵 | |
3. 具有更高的焦油重整活性(镍基催化剂的活性是白云石的8~10倍) | 3. 容易再生 |
1 | Anis S, Zainal Z A.Tar reduction in biomass producer gas via mechanical,catalytic and thermal methods:a review[J].Renewable and Sustainable Energy Reviews,2011,15(5):2355-2377. |
2 | 尤占平,由世俊,李宪莉,等.生物质炭催化裂解焦油的性能研究[J].可再生能源,2011,29(3):39-42. |
You Zhan‑ping, You Shi‑jun, Li Xian‑li,et al.Study on biomass char on catalytic pyrolysis performance of tar[J].Renewable Energy Resources,2011,29(3):39-42. | |
3 | 李乐豪,闻光东,杨启炜,等.生物质焦油处理方法研究进展[J].化工进展,2017,36(6):2407-2416. |
Li Le‑hao, Wen Guang‑dong, Yang Qi‑wei,et al.Advance in the treatment methods of biomass tar[J].Chemical Industry and Engineering Progress,2017,36(6):2407-2416. | |
4 | Brandt P, Henriksen U.Decomposition of tar in pyrolysis gas by partial oxidation and thermal cracking:part 2[J].Biomass for Energy and Industry,1998:1616-1618. |
5 | Sikarwar V S, Zhao M, Fennell P S,et al.Progress in biofuel production from gasification[J].Progress Energy in Combustion Science,2017,61:189-248. |
6 | 李九如,李想,陈巨辉,等.生物质气化技术进展[J].哈尔滨理工大学学报,2017,22(3):137-140. |
Li Jiu‑ru, Li Xiang, Chen Ju‑hui,et al.Progress on technology of biomass gasification[J].Journal of Harbin University of Science and Technology,2017,22(3):137-140. | |
7 | Richardson Y, Blin J, Julbe A.A short overview on purification and conditioning of syngas produced by biomass gasification:catalytic strategies,process intensification and new concepts[J].Progress Energy in Combustion Science,2012,38:765-781. |
8 | Molino A, Chianese S, Musmarra D.Biomass gasification technology:the state of the art overview[J].Journal of Energy Chemistry,2016,25:10-25. |
9 | Chanthakett A, Arif M T, Khan M M K,et al.Performance assessment of gasification reactors for sustainable management of municipal solid waste[J].Journal of Environmental Management,2021,291:112661. |
10 | 姜建国,张卫杰,孙荣峰,等.生物质气化过程中焦油脱除技术研究进展[J].山东科学,2019,32(1):127-134. |
Jiang Jian‑guo, Zhang Wei‑jie, Sun Rong‑feng,et al.Research progress on tar removal technology in biomass gasification process[J].Shandong Science,2019,32(1):127-134. | |
11 | Devi L, Ptasinski K J, Janssen F J.A review of the primary measures for tar elimination in biomass gasification processes[J].Biomass Bioenergy,2002,24:125-140. |
12 | Asadullah M.Biomass gasification gas cleaning for downstream applications:a comparative critical review[J].Renewable and Sustainable Energy Reviews,2014,40:118-132. |
13 | Nunnally T, Tsangaris A, Rabinovich A,et al.Gliding arc plasma oxidative steam reforming of a simulated syngas containing naphthalene and toluene[J].International Journal of Hydrogen Energy,2014,39(23):11976-11989. |
14 | Bridgwater A V.The technical and economic feasibility of biomass gasification for power generation[J].Fuel,1995,74(5):631-653. |
15 | 江俊飞,郎林,阴秀丽,等.生物质燃气中固体颗粒物的临氧燃烧研究[J].太阳能学报,2018,39(9):2432-2438. |
Jiang Jun‑fei, Lang Lin, Yin Xiu‑li,et al.Partial oxidation of solid particles from biomass gasification in atmosphere of flammble gas[J].Acta Energiae-Solaris Sinica,2018,39(9):2432-2438. | |
16 | 林娜,郎林,刘华财,等.生物质气化燃气中固体颗粒物的恒温临氧热解机理研究[J].燃料化学学报,2018,46(3):290-297. |
Lin Na, Lang Lin, Liu Hua‑cai,et al.Isothe rmal partial oxidative pyrolysis mechanisms of solid particles from biomass gasification[J].Journal of Fuel Chemistry and Technology,2018,46(3):290-297. | |
17 | Hu M, Laghari M, Cui B H,et al.Catalytic cracking of biomass tar over char supported nickel catalyst[J].Energy,2018,145:228-237. |
18 | Chan F L, Tanksale A.Review of recent developments in Ni‑based catalysts for biomass gasification[J].Renewable and Sustainable Energy Reviews,2014,38:428-438. |
19 | 刘世宇,吕竞一,郭锐,等.生物质合成气强化重整提质制取氢气的热力学分析[J].可再生能源,2021,39(8):995-1000. |
Liu Shi‑yu, Jing‑yi Lyu, Guo Rui,et al.Thermodynamic analysis on hydrogen production of biomass syngas enhanced reforming and refining[J].Renewable Energy Resources,2021,39(8):995-1000. | |
20 | Corella J, Toledo J M, Padilla R.Olivine or dolomite as in‑bed additive in biomass gasification with air in a fluidized bed:which is better?[J].Energy Fuels,2004,18:713-720. |
21 | Sutton D, Kelleher B, Ross J R H.Review of literature on catalysts for biomass gasification[J].Fuel Processing Technology,2001,73(3):155-173. |
22 | Miyazawa T, Kimura T, Nishikawa J,et al.Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass[J].Catalysis Today,2006,115(1/2/3/4):254-262. |
23 | Peng W X, Ge S B, Ebadi A G,et al.Syngas production by catalytic co‑gasification of coal‑biomass blends in a circulating fluidized bed gasifier[J].Journal of Cleaner Production,2017,168:1513-1517. |
24 | Noichi H, Uddin A, Sasaoka E.Steam reforming of naphthalene as model biomass tar over iron‑aluminum and iron‑zirconium oxide catalyst catalysts[J].Fuel Processing Technology,2010,91(11):1609-1616. |
25 | Lasa H, Salaices E, Mazumder J,et al.Catalytic steam gasification of biomass:catalysts,thermodymanics and kinetics[J].Chemical Reviews,2011,111(9):5404-5433. |
26 | Diego L F, Garcia‑Labiano F, Gayan P,et al.Tar abatement for clean syngas production during biomass gasification in a dual fluidized bed[J].Fuel Processing Technology,2016,152:116-123. |
27 | Hackel M, Schaub G, Nacken M,et al.Kinetics of reduction and oxidation reactions for application in catalytic gas‑particle‑filters[J].Powder Technology,2008,180(1/2):239-244. |
28 | Nacken M, Ma L N, Heidenreich S,et al.Performance of a catalytically activated ceramic hot gas filter for catalytic tar removal from biomass gasification gas[J].Applied Catalysis B-Environmental,2009,88(3/4):292-298. |
29 | Guo F Q, Jia X P, Liang S,et al.Development of biochar‐based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification[J].Bioresource Technology,2020,298:122263. |
[1] | HAO Bo, YIN Xing-chao, YAN Jun-wei, ZHANG Li. Gesture Recognition in the Complex Environment Based on Gan-St-YOLOv5 [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 953-963. |
[2] | LI Juan-li, WEI Dai-liang, LI Bo, WEN Xiao. Improved SSD Rapid Separation Model of Coal Gangue Based on Deep Learning and Light-Weighting [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1474-1480. |
[3] | WANG Hai-fang, CUI Yang-yang, LI Ming-fei, LI Guang-yu. Mobile Robot Path Planning Algorithm Based on Improved RRT*FN [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1217-1225. |
[4] | GU De-ying, LUO Yu-lun, LI Wen-chao. Traffic Target Detection in Complex Scenes Based on Improved YOLOv5 Algorithm [J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1073-1079. |
[5] | LI Gang, KANG Jin, CUI Zhen, HU Peng. Functional Experiment and Simulation Study of Explosion Isolation Flap Valves [J]. Journal of Northeastern University(Natural Science), 2021, 42(8): 1166-1173. |
[6] | LI Gang, CUI Zhen, HU Peng, NI Lei. Propagation Law of Dust Explosion in Double-Sided Branch Structure Pipes [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 734-740. |
[7] | WANG Dong-hui, YIN Wan-zhong, YANG Bin, QIN Hong-bin. Depression of Starch on Fine Hematite Enhanced with Magnetic Seeding Aggregation [J]. Journal of Northeastern University(Natural Science), 2021, 42(1): 111-116. |
[8] | WEI Ying, XU Chu-qiao, DIAO Zhao-fu, LI Bo-qun. A Multi-target Pedestrian Tracking Algorithm Based on Generated Adversarial Network [J]. Journal of Northeastern University(Natural Science), 2020, 41(12): 1673-1680. |
[9] | GAO Cheng-kang , XU Qing-jiang , XING Yu-hong , NA Hong-ming. Emission Inventory of Atmospheric Pollutants from on-Road Vehicles in Low-Temperature Areas in Winter [J]. Journal of Northeastern University Natural Science, 2019, 40(9): 1343-1349. |
[10] | DING Jia-nan, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Study on the Circular Profile of Scroll Compressors with Changing Radii [J]. Journal of Northeastern University Natural Science, 2019, 40(5): 722-727. |
[11] | MA Hui, DUAN Tian-tang, SUN Yan-ning, CHEN Kang-kang. Mesh Stiffness Analysis of Planetary Gear System with Gear Tip Relief [J]. Journal of Northeastern University Natural Science, 2019, 40(3): 380-385. |
[12] | MA Tie-min, ZHOU Fu-cai, WANG Shuang. Social Network Event Recommendation Algorithms Based on User Similarity Random Walk [J]. Journal of Northeastern University Natural Science, 2019, 40(11): 1533-1538. |
[13] | ZHANG De-sheng, ZHANG Qin, YU Yun-he, YANG Hong-ying. Effects of Y on Microstructure and Properties of Ag-based Alloy Targets [J]. Journal of Northeastern University Natural Science, 2018, 39(6): 813-817. |
[14] | MENG Lu, CHEN Mei-ya. Salient Region Extraction Algorithm for Multi-target [J]. Journal of Northeastern University Natural Science, 2018, 39(10): 1380-1384. |
[15] | YAN Fang, XU Kai-li, ZHANG Xiu-min. Unsteady Simulation on Biomass Gasification Heating System with Fan & Double-Tube [J]. Journal of Northeastern University Natural Science, 2017, 38(7): 1017-1021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||