Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (10): 1459-1468.DOI: 10.12068/j.issn.1005-3026.2024.10.012
• Resources & Civil Engineering • Previous Articles
Ying WANG1,2,3, Xiao-wei GU1,2,3(), Qing WANG1,2,3, Xiao-chuan XU1,2,3
Received:
2023-05-23
Online:
2024-10-31
Published:
2024-12-31
Contact:
Xiao-wei GU
About author:
GU Xiao-wei,E-mail:guxiaowei@mail.neu.edu.cnCLC Number:
Ying WANG, Xiao-wei GU, Qing WANG, Xiao-chuan XU. Properties and Hydration Mechanism of Lime-Based Slag‑Steel Slag Composite Cementitious Materials[J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1459-1468.
材料 | SiO2 | Al2O3 | Fe2O3 | MgO | CaO |
---|---|---|---|---|---|
钢渣 | 13.24 | 4.35 | 25.12 | 3.6 | 37.35 |
矿渣 | 34.50 | 17.70 | 1.03 | 6.01 | 34.00 |
Table 1 Chemical composition of the material (mass fraction)
材料 | SiO2 | Al2O3 | Fe2O3 | MgO | CaO |
---|---|---|---|---|---|
钢渣 | 13.24 | 4.35 | 25.12 | 3.6 | 37.35 |
矿渣 | 34.50 | 17.70 | 1.03 | 6.01 | 34.00 |
组号 | 石灰 | 钢渣 | 矿渣 | 水 |
---|---|---|---|---|
T0 | 43.2 | 0 | 316.8 | 144 |
T1 | 43.2 | 36 | 280.8 | 144 |
T2 | 43.2 | 72 | 244.8 | 144 |
T3 | 43.2 | 108 | 208.8 | 144 |
T4 | 43.2 | 144 | 172.8 | 144 |
T5 | 54.0 | 108 | 198.0 | 144 |
T6 | 64.8 | 108 | 187.2 | 144 |
Table2 Mix ratio of various materials in strength test of composite cementitious materials compressive
组号 | 石灰 | 钢渣 | 矿渣 | 水 |
---|---|---|---|---|
T0 | 43.2 | 0 | 316.8 | 144 |
T1 | 43.2 | 36 | 280.8 | 144 |
T2 | 43.2 | 72 | 244.8 | 144 |
T3 | 43.2 | 108 | 208.8 | 144 |
T4 | 43.2 | 144 | 172.8 | 144 |
T5 | 54.0 | 108 | 198.0 | 144 |
T6 | 64.8 | 108 | 187.2 | 144 |
位置 | Ca | Si | Al | Mg | S |
---|---|---|---|---|---|
1 | 48.92 | 7.08 | 2.14 | 0.65 | 0.55 |
2 | 39.36 | 8.68 | 2.99 | 1.16 | 0.67 |
3 | 32.81 | 4.83 | 6.77 | 0.91 | 2.32 |
Table3 Mass fraction of main elements of C-(A)-S-H
位置 | Ca | Si | Al | Mg | S |
---|---|---|---|---|---|
1 | 48.92 | 7.08 | 2.14 | 0.65 | 0.55 |
2 | 39.36 | 8.68 | 2.99 | 1.16 | 0.67 |
3 | 32.81 | 4.83 | 6.77 | 0.91 | 2.32 |
1 | Yang K H, Song J K, Song K I.Assessment of CO2 reduction of alkali‑activated concrete[J].Journal of Cleaner Production,2013,39:265-272. |
2 | Wang J, Wang J X, Huang Y,et al.Preparation of alkali‑activated slag‑fly ash‑metakaolin hydroceramics for immobilizing simulated sodium‑bearing waste[J].Journal of the American Ceramic Society,2015,98(5):1393-1399. |
3 | Davidovits J.Geopolymers and geopolymeric materials[J].Journal of Thermal Analysis,1989,35(2):429-441. |
4 | O’Connor J, Nguyen T B T, Honeyands T,et al.Production,characterisation,utilisation,and beneficial soil application of steel slag:a review[J].Journal of Hazardous Materials,2021,419:126478. |
5 | Shi C H, Wang X C, Zhou S,et al.Mechanism,application,influencing factors and environmental benefit assessment of steel slag in removing pollutants from water:a review[J].Journal of Water Process Engineering,2022,47:102666. |
6 | Han F H, Zhang Z Q.Properties of 5‑year‑old concrete containing steel slag powder[J].Powder Technology,2018,334:27-35. |
7 | Muhmood L, Vitta S, Venkateswaran D.Cementitious and pozzolanic behavior of electric arc furnace steel slags[J].Cement and Concrete Research,2009,39(2):102-109. |
8 | 崔孝炜,倪文,任超.钢渣矿渣基全固废胶凝材料的水化反应机理[J],材料研究学报,2017,31(9):687-694. |
Cui Xiao‑wei, Ni Wen, Ren Chao.Hydration reactionmechanism of slag‑based solid waste cementitious materials[J].Journal of Materials Research,2017,31(9):687-694. | |
9 | 李颖,吴保华,倪文,等.矿渣-钢渣-石膏体系早期水化反应中的协同作用[J].东北大学学报(自然科学版),2020,41(4):581-586. |
Li Ying, Wu Bao‑hua, Ni Wen,et al.Synergies in early hydration reaction of slag‑steel slag‑gypsum system[J].Journal of Northeastern University (Natural Science),2020,41(4):581-586. | |
10 | Duan S Y, Liao H Q, Cheng F Q,et al.Investigation into the synergistic effects in hydrated gelling systems containing fly ash,desulfurization gypsum and steel slag[J].Construction and Building Materials,2018,187:1113-1120. |
11 | Duan S Y, Liao H Q, Song H P,et al.Performance improvement to ash‑cement blocks by adding ultrafine steel slag collected from a supersonic steam‑jet smasher[J].Construction and Building Materials,2019,212:140-148. |
12 | Zhao J H, Li Z H, Wang D M,et al.Hydration superposition effect and mechanism of steel slag powder and granulated blast furnace slag powder[J].Construction and Building Materials,2023,366:130101. |
13 | Chen P, Ma B G, Tan H B,et al.Improving the mechanical property and water resistance of β‑hemihydrate phosphogypsum by incorporating ground blast‑furnace slag and steel slag[J].Construction and Building Materials,2022,344:128265. |
14 | Wu M, Zhang Y S, Jia Y T,et al.Influence of sodium hydroxide on the performance and hydration of lime‑based low carbon cementitious materials[J].Construction and Building Materials,2019,200:604-615. |
15 | Zhang W, Hao X S, Wei C,et al.Synergistic enhancement of converter steelmaking slag,blast furnace slag,bayer red mud in cementitious materials:strength,phase composition,and microstructure[J].Journal of Building Engineering,2022,60:105177. |
16 | Zhang W, Liu X M, Zhang Z Q,et al.Synergic effects of circulating fluidized bed fly ash‑red mud‑blastfurnace slag in green cementitious materials:hydration products and environmental performance[J].Journal of Building Engineering,2022,58:105007. |
17 | Matschei T, Lothenbach B, Glasser F P.The AFm phase in Portland cement[J].Cement and Concrete Research,2007,37(2):118-130. |
18 | 曹伟达,杨全兵.碳化养护对钢渣-熟石灰固碳砖耐久性的影响[J].建筑材料学报,2023,26(3):324-331.. |
Cao Wei‑da, Yang Quan‑bing.Effect on carbonization curing on durability of carbon fixing steel slag‑hydrated lime brick[J].Journal of Building Materials,2023,26(3):324-331. | |
19 | An Q, Pan H M, Zhao Q X,et al.Strength development and microstructure of sustainable geopolymers made from alkali‑activated ground granulated blast‑furnace slag,calcium carbide residue,and red mud[J].Construetion and Building Materials,2022,356:712-721. |
20 | 徐东,倪文,汪群慧,等.碱渣复合胶凝材料制备无熟料混凝土[J],哈尔滨工业大学学报,2020,52(8):151-160. |
Xu Dong, Ni Wen, Wang Qun‑hui,et al.Preparation of non‑clinker concrete using alkaline residue composite cementitious materials[J].Journal of Harbin Institute of Technology,2020,52(8):151-160. | |
21 | Guo W C, Zhao Q X, Sun Y J,et al.Effects of various curing methods on the compressive strength and microstructure of blast furnace slag‑fly ash‑based cementitious material activated by alkaline solid wastes[J].Construction and Building Materials,2022,357:129397. |
22 | Lodeiro I G, Macphee D E, Palomo A,et al.Effect of alkalis on fresh C-S-H gels.FT-IR analysis[J].Cement and Concrete Research,2009,39(3):147-153. |
23 | Wu M, Zhang Y S, Jia Y T,et al.Effects of sodium sulfate on the hydration and properties of lime‑based low carbon cementitious materials[J].Journal of Cleaner Production,2019,220:677-687. |
24 | Zhao W Y, Guo Q Q, Do X Q, et al.Impact response of steel‑concrete composite panels:experiments and FE analyses[J].Steel and Composite Structures,2018,26(3):255-263. |
25 | 苏运辉,徐家兴,张立刚,等.偏高岭土对大掺量石灰石粉水泥抗氯离子渗透性能的影响[J].铁道科学与工程学报,2023,20(10):3779-3788. |
Su Yun‑hui, Xu Jia‑xing, Zhang Li‑gang,et al.Effect of metakaolin on the resistance to chloride ion permeability of cement with high‑volume of limestone powder[J].Journal of Railway Science and Engineering,2023,20(10):3779-3788. | |
26 | 倪文,李颖,许成文,等.矿渣-电炉还原渣全固废胶凝材料的水化机理[J].中南大学学报(自然科学版),2019,50(10):2342-2351. |
Ni Wen, Li Ying, Xu Cheng‑wen,et al.Hydration mechanism of blast furnace slag‑reduction slag based solid waste cementing materials[J].Journal of Central South University (Science and Technology),2019,50(10):2342-2351. | |
27 | Vincent M, Sandrine‑Garid B, Isabelle D B.The influence of an ion‑exchange resin on the kinetics of hydration of tricalcium silicate[J].Cement and Concrete Research,2010,40:1459-1464. |
28 | Taylor H F W, Turner A B.Reactions of tricalcium silicate paste with organic liquids[J].Cement and Concrete Research,1987,17(4):613-623. |
[1] | WANG Hai-tao, LI Jia-dong, DENG Xiang-tao, WANG Zhao-dong. Effect of Solution Temperature on Microstructure and Mechanical Properties of Fe-20Mn-9Al-1.2C Low-Density Steel [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 609-616. |
[2] | REN Zhao-hui, LI Zhu-hong, WANG Yun-he, ZHANG Zi-ting. Surface Mechanical Properties of Ultrasonic Rolling Micro-forging Additive Manufactured Parts [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 634-641. |
[3] | MAO Ning, NIU Hui-rong, LIU Jing-xian. Experimental Study on Acid Resistance Characteristics of Polyaromatic Oxadiazole Fiber [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 719-725. |
[4] | WU Guan-qing, WEI Jin, YUE Xia-bing, YIN Zeng-liang. Deformation Characteristics and Vertical Earth Pressure Calculation of Low Fill Steel Corrugated Pipe Culverts [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1337-1345. |
[5] | TIAN Ni , ZHANG Yao-zhong, ZHOU Yi-ran, QIN Guang-hua. Effect of Zr Addition on Microstructure and Mechanical Properties of Al-10Zn-2.5Mg-1.6Cu Alloy Sheet [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 951-958. |
[6] | ZHAO Yu-hui , GAO Meng-qiu , ZHAO Ji-bin , HE Chen. Microstructure and Properties of WC Particles Reinforced 316L Stainless Steel Composites Prepared by Additive and Subtractive Manufacturing [J]. Journal of Northeastern University(Natural Science), 2022, 43(2): 197-205. |
[7] | ZHU Cheng-lin, GAO Xiu-hua, WANG Ming-ming, SONG Li-ying. Effect of Quenching Temperature on Microstructure and Mechanical Properties of 12Cr14Ni2 Stainless Structural Steel [J]. Journal of Northeastern University(Natural Science), 2021, 42(6): 781-788. |
[8] | DONG Shuo, SHA Song, MENG Shi-qian, RONG Guan. Experimental Investigation of Mechanical Properties of Three Types of High Temperature Rocks After Liquid Nitrogen Cooling [J]. Journal of Northeastern University(Natural Science), 2021, 42(11): 1591-1599. |
[9] | BAO Jun-feng, YU Yue-guang, JIA Cheng-chang. Effects of ZrO2 Addition Amount on Microstructure and Mechanical Property of WC-6Co Prepared by Spark Plasma Sintering [J]. Journal of Northeastern University(Natural Science), 2021, 42(1): 43-48. |
[10] | WANG Ming-ming, GAO Xiu-hua, DU Lin-xiu, ZHANG Da-zheng. Microstructure and Mechanical Properties of V-N Microalloyed X80 High Deformability Pipeline Steel [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 801-806. |
[11] | CHEN Meng, LIU Yang-bo, TAO Yun-xiao, WANG Hao. Experimental Study on Properties of Recycled Tyre Polymer Fiber Reinforced Concrete [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 870-874. |
[12] | ZHANG Zhi-qiang, HE Chang-shu, ZHAO Su, ZHAO Xiang. Microstructure and Mechanical Properties of the Stirred Zone of Ultrasonic Assisted Friction Stir Welded Joint of 7075-T6 Alloy [J]. Journal of Northeastern University Natural Science, 2020, 41(12): 1708-1714. |
[13] | YU Tian-biao, ZHAO Yu, BI Xiao-xi, CHEN Ya-dong. Effect of Porous Structure on Mechanical Properties of Vero White Photosensitive Resin [J]. Journal of Northeastern University Natural Science, 2019, 40(6): 852-856. |
[14] | HUANG Hui-qiang, DI Hong-shuang, ZHANG Tian-yu, YAN Ning. Effect of Intercritical Annealing Temperature on Microstructure and Mechanical Property of High Al-Low Si TRIP Steel [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1700-1706. |
[15] | HUANG Wen-tao, GONG En-pu, ZHANG Yong-li, MIAO Zhuo-wei. Oncoids and Its Significance from the Base of Huanglong Formation in Langping, Guangxi [J]. Journal of Northeastern University Natural Science, 2019, 40(11): 1606-1610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||