Numerical Simulation on Flow Characteristics of Self-stirring Reactor Driven by Pressure Energy
ZHANG Zi-mu1,2, LYU Chao2, ZHAO Qiu-yue2, LIU Yan2
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;2. School of Materials & Metallurgy, Northeastern University, Shenyang 110819, China.
ZHANG Zi-mu, LYU Chao, ZHAO Qiu-yue, LIU Yan. Numerical Simulation on Flow Characteristics of Self-stirring Reactor Driven by Pressure Energy[J]. Journal of Northeastern University Natural Science, 2015, 36(7): 962-965.
[1]柯家骏.有色金属湿法冶金中加压浸出过程的进展[C]//中国有色金属学会第三届学术会议论文集.长沙,1997:160-166.(Ke Jia-jun.Hydrometallurgy pressure leaching process progresses [C]//The Third Conference Proceedings of the Nonferrous Metals Society of China.Changsha,1997:160-166.) [2]廖德华,刘汉钊,李长根.加压湿法冶金[J].国外金属矿选矿,2006,43(11):10-15.(Liao De-hua,Liu Han-zhao,Li Chang-gen.Pressure hydrometallurgy[J].Metallic Ore Dressing Abroad,2006,43(11):10-15.) [3]Xie H Y,Wang J K,Lu H,et al.Pressure leaching technique for manganese smelter dust[J].Hydrometallurgy,2013,134(1):96-101. [4]Yu Z L,Xie K Q,Ma W H,et al.Kinetics of iron removal from metallurgical grade silicon with pressure leaching[J].Rare Metals,2011,30(6):688-694. [5]Xu Z F,Li Q,Nie H P.Pressure leaching technique of smelter dust with high-copper and high-arsenic[J].Transactions of Nonferrous Metals Society of China,2010,20(1):176-181. [6]Liu K,Chen Q,Hu H,et al.Characteristics of scales formed from pressure leaching of Yuanjiang laterite[J].Hydrometallurgy,2011,109(1):131-139. [7]Li X H,Zhang Y J,Qin Q L,et al.Indium recovery from zinc oxide flue dust by oxidative pressure leaching[J].Transactions of Nonferrous Metals Society of China,2010,20(1):141-145. [8]He S M,Wang J K,Yan J F.Pressure leaching of high silica Pb-Zn oxide ore in sulfuric acid medium[J].Hydrometallurgy,2010,104(2):235-240. [9]Rafee R,Rahimzadeh H,Ahmadi G.Numerical simulations of airflow and droplet transport in a wave-plate mist eliminator[J].Chemical Engineering Research and Design,2010,88(10):1393-1404.(上接第951页)消耗,并提高金属收得率,降低钢铁料消耗,并且,脱磷阶段结束炉渣碱度控制越低,相当于回收的CaO量越多,能够实现的钢液去Si量也越多.2) 低碱度脱磷渣可以有效改善炉渣的熔化性能,当脱磷渣碱度控制在1.2~1.8范围时,脱磷渣半球点温度基本可以控制在1380℃以内,炉渣中的游离CaO质量分数基本可以控制在0.7%的较低水平,在转炉脱磷阶段冶炼温度下,加入转炉内的石灰等可以充分熔化,为转炉脱磷提供了前提条件.3) 低碱度脱磷渣的矿物形貌大致分为3类:灰色相、灰白色相和白色相,灰色相为硅钙镁相,分布面积广,为基体相;白色相为镁铁相,呈无定形状,杂乱分布于灰色相中;灰白色相为中间相,是蔷薇辉石或者是硅酸盐和镁铁相形成的复合相.4) 随着脱磷渣碱度的降低,脱磷阶段结束的倒渣量不断增加,当炉渣碱度控制在1.7以内时,对于210t转炉倒渣量基本可以控制在8t以上,对于100t转炉倒渣量基本可以控制在5t以上.