WANG Jian, SUN Zhi-li, YU Zhen-liang, CHAI Xiao-dong. Remaining Useful Life Interval Estimation for Machine Parts Based on SVM[J]. Journal of Northeastern University Natural Science, 2016, 37(7): 974-978.
[1]Sikorska J Z,Hodkiewicz M,Ma L.Prognostic modelling options for remaining useful life estimation by industry[J].Mechanical Systems and Signal Processing,2011,25(5):1803-1836. [2]Si X S,Wang W B,Hu C H,et al.Remaining useful life estimation—a review on the statistical data driven approaches[J].European Journal of Operational Research,2011,213(1):1-14. [3]Sanders D A,Jasper G J,Alexander G.Improving ability of tele-operators to complete progressively more difficult mobile robot paths using simple expert systems and ultrasonic sensors[J].Industrial Robot,2010,37(5):431-440. [4]Si X S,Wang W B,Hu C H,et al.A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J].Mechanical Systems and Signal Processing,2013,35(1/2):219-237. [5]Su C,Shen J Y.A novel multi-hidden semi-Markov model for degradation state identification and remaining useful life estimation[J].Quality and Reliability Engineering International,2013,29(8):1181-1192. [6]Emmanuel R,Rafael G.Remaining useful life estimation by classification of predictions based on a neuro-fuzzy system and theory of belief functions[J].IEEE Transactions on Reliability,2014,63(2):555-566. [7]Loutas T H,Roulias D,Georgoulas G,et al Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic E-support vectors regression[J].IEEE Transactions on Reliability,2013,62(2):821-832. [8]Caesarendraa W,Widodo A,Yang B S.Application of relevance vector machine and logistic regression for machine degradation assessment[J].Mechanical Systems and Signal Processing,2010,24(4):1161-1171. [9]申中杰,陈雪峰,何正嘉,等.基于相对特征和多变量支持向量机的滚动轴承剩余寿命[J].机械工程学报,2013,49(2):183-189.(Shen Zhong-jie,Chen Xue-feng,He Zheng-jia,et al.Remaining life predictions of rolling bearing based on relative features and multivariable support vector machine [J].Journal of Mechanical Engineering,2013,49(2):183-189.) [10]Lin C J,Weng R C.Simple probabilistic predictions for support vector regression[R].Taipei:National Taiwan University,2004.