东北大学学报:自然科学版 ›› 2020, Vol. 41 ›› Issue (6): 818-823.DOI: 10.12068/j.issn.1005-3026.2020.06.010

• 材料与冶金 • 上一篇    下一篇

Cr5支承辊接触疲劳损伤及其次表层组织变化

李彦龙1,2, 吴琼3, 秦晓峰4, 刘常升1   

  1. (1.东北大学 材料科学与工程学院, 辽宁 沈阳110819; 2.辽宁增材制造产业技术研究院有限公司, 辽宁 沈阳110200;3.宝武钢铁集团有限公司, 上海201900; 4.太原理工大学 机械与运载工程学院, 山西 太原030024)
  • 收稿日期:2019-06-19 修回日期:2019-06-19 出版日期:2020-06-15 发布日期:2020-06-12
  • 通讯作者: 李彦龙
  • 作者简介:李彦龙(1986-),男,辽宁辽阳人,东北大学博士研究生; 刘常升(1963-),男,内蒙古奈曼旗人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金-辽宁联合基金重点资助项目(U1508213) .

Contact Fatigue Damage and Subsurface Microstruture of Cr5 Backup Roll

LI Yan-long1,2, WU Qiong3, QIN Xiao-feng4, LIU Chang-sheng1   

  1. 1.School of Materials Science & Engineering, Northeastern University, Shenyang 110819, China; 2.Liaoning Additive Manufacturing Industry Technology Research Institute Co., Ltd., Shenyang 110200, China; 3.Baowu Group Corporation Limited, Shanghai 201900, China; 4.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
  • Received:2019-06-19 Revised:2019-06-19 Online:2020-06-15 Published:2020-06-12
  • Contact: LI Yan-long
  • About author:-
  • Supported by:
    -

摘要: 针对支承辊使用过程中的疲劳失效现象,利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(SEM)、显微压痕仪和X射线应力仪等对滚动接触疲劳前后Cr5支承辊钢次表层组织进行了研究.结果表明,支承辊在交变接触应力作用下发生接触疲劳损伤,疲劳损伤最大值位于距表面约400μm的支承辊次表层.疲劳损伤引起支承辊次表层硬度升高,残余应力减小,耐腐蚀性增强.疲劳硬化层微观组织发生破碎,位错密度升高.在接触应力不变的情况下,支承辊滚动接触疲劳损伤程度随着寿命比例的增加而增大.

关键词: 支承辊, 滚动接触疲劳, 显微组织, 疲劳硬化, 残余应力

Abstract: Optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), micro-indentation tester and X-ray stress meter were employed to investigate the microstructure of backup rolls’ subsurface after rolling contact fatigue. The maximum value of fatigue damage was located on the subsurface of the backup roll which was about 400μm away from the surface. The increased hardness, reduced residual stress and elevated corrosion resistance of the subsurface resulted from rolling contact fatigue. Microstructure of the subsurface was broken into small pieces and dislocation density was increased. Under one constant contact stress, fatigue damage of backup roll increased with the increasing percentage of fatigue life.

Key words: backup roll, roll contact fatigue, microstructure, fatigue hardening, residual stress

中图分类号: