东北大学学报:自然科学版 ›› 2014, Vol. 35 ›› Issue (7): 926-930.DOI: 10.12068/j.issn.1005-3026.2014.07.004

• 信息与控制 • 上一篇    下一篇

基于EMD的心电信号压缩算法

杨丹1,秦梦芝2,徐彬1,王旭1   

  1. (1 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2 合肥工业大学 电子科学与应用物理学院, 安徽 合肥230009)
  • 收稿日期:2013-07-27 修回日期:2013-07-27 出版日期:2014-07-15 发布日期:2014-04-11
  • 通讯作者: 杨丹
  • 作者简介:杨丹(1979-),女,辽宁营口人,东北大学讲师,博士;王旭(1956-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61372015);中央高校基本科研业务费专项资金资助项目(N120204001);中央高校基本科研青年教师科研创新基金资助项目(N110316001).

ECG Compression Algorithm Based on Empirical Mode Decomposition

YANG Dan1, QIN Mengzhi2, XU Bin1, WANG Xu1   

  1. 1 School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2 College of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China.
  • Received:2013-07-27 Revised:2013-07-27 Online:2014-07-15 Published:2014-04-11
  • Contact: QIN Mengzhi
  • About author:-
  • Supported by:
    -

摘要: 针对生物医学信号特别是心电信号(ECG)的特点和数据压缩需求,提出一种基于经验模态分解(EMD)方法的ECG信号压缩算法.所提算法计算简单,无需预先或后处理.以MIT-BIH标准数据库的心律失常数据作为实验数据,通过压缩比(CR)、均方根百分差异(PRD)、归一化均方根百分差异(PRDN)、均方根(RMS)、信噪比(SNR)、质量评分(QS)6个评价参数分析所提算法性能,并与基于小波分解的压缩算法进行比较.实验结果表明,所提算法具有较好的压缩比与保真度,证明了该算法的有效性.

关键词: 经验模态分解, 心电信号, 压缩算法, MIT-BIH标准数据库, 小波分解

Abstract: A compression algorithm based on empirical mode decomposition(EMD)was described in order to investigate the performance of EMD in biomedical signals, and especially in the case of electrocardiogram(ECG). The proposed algorithm was computationally simple to treat nonstationary and nonlinear data without pre or postprocessing. In order to evaluate the performance of the proposed compression algorithm, MITBIH arrhythmia database was applied, and some important parameters were obtained, such as the compress ratio(CR), percent root mean square difference(PRD), percent root mean square difference normalized(PRDN), root mean square(RMS), signal to noise ratio(SNR), and quality score(QS)values. Experimental results indicated that the proposed algorithm has a better compress ratio and fidelity, which proved the feasibility of the proposed algorithm.

Key words: EMD(empirical mode decomposition), ECG(electrocardiogram), compression algorithm, MITBIH arrhythmia database, wavelet decomposition

中图分类号: