东北大学学报:自然科学版 ›› 2015, Vol. 36 ›› Issue (8): 1212-1216.DOI: 10.12068/j.issn.1005-3026.2015.08.032

• 管理科学 • 上一篇    

基于无标度网络的创新扩散模型研究

黄玮强1, 姚爽2, 庄新田1, 辛未3   

  1. (1. 东北大学 工商管理学院, 辽宁 沈阳110819; 2. 沈阳化工大学 经济与管理学院, 辽宁 沈阳110142; 3. 澳大利亚国立大学 商学院, 堪培拉 2913)
  • 收稿日期:2014-07-02 修回日期:2014-07-02 出版日期:2015-08-15 发布日期:2015-08-28
  • 通讯作者: 黄玮强
  • 作者简介:黄玮强(1982-),男,福建长汀人,东北大学副教授,博士; 庄新田(1956-),男,吉林四平人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目 (71001022,71371044,71201108); 中国博士后科学基金特别资助项目(2013T60295).

Innovation Diffusion Modeling Based on Scale-Free Networks

HUANG Wei-qiang1, YAO Shuang2, ZHUANG Xin-tian1, XIN Wei3   

  1. 1. School of Business Administration, Northeastern University, Shenyang 110819, China; 2. School of Economics and Management, Shenyang University of Chemical Technology, Shenyang 110142, China; 3. College of Business and Economics, Australian National University, Canberra 2913, Australia.
  • Received:2014-07-02 Revised:2014-07-02 Online:2015-08-15 Published:2015-08-28
  • Contact: HUANG Wei-qiang
  • About author:-
  • Supported by:
    -

摘要: 从无标度潜在采纳者关系网络出发,考虑潜在采纳者所处局域关系网络对创新采纳决策的影响,自底向上,从微观到宏观建立了创新扩散模型.模型一方面放宽了传统Bass类模型对于潜在采纳者关系网络不符合实际的假设;另一方面,引入了无标度网络的重要参数(度分布幂指数),使得创新采纳决策的微观机制能与宏观扩散数据相结合,体现了微分方程建模方法的优势,提高了模型的应用价值.对模型的进一步仿真分析发现,潜在采纳者关系网络节点度值的异质性程度越高及网络平均度值越小,则创新扩散深度越大、创新扩散速度越慢.

关键词: 创新扩散, 潜在采纳者, 关系网络, 无标度网络, Bass模型

Abstract: Considering the influence of local area networks on innovation adoption decision-making of consumers, an innovation diffusion model from the micro to the macro was constructed based on the scale-free potential adopter networks. On one hand, the constructed model relaxed Bass model’s unrealistic assumptions of the consumer networks; on the other hand, the model introduced an important parameter of the scale-free networks (degree distribution exponential) , which helped to integrate the micro-adoption mechanisms and macro-diffusion data. With an advantage of differential equation modeling, the model’s application value was improved. A further simulation analysis of the model demonstrated that the more heterogeneous consumer networks’ node degrees and the less network average degrees are, the deeper and the faster innovation diffusion will be.

Key words: innovation diffusion, potential adopter, relationship network, scale-free network, Bass model

中图分类号: