东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (12): 1673-1679.DOI: 10.12068/j.issn.1005-3026.2023.12.001

• 信息与控制 •    下一篇

流-固-电多物理场耦合模型的红细胞流变学研究

胡晟1,2, 王杨成1, 吕晓永1,2   

  1. (1. 东北大学秦皇岛分校 控制工程学院, 河北 秦皇岛066004;2. 东北大学秦皇岛分校 河北省微纳精密光学传感与检测技术重点实验室, 河北 秦皇岛066004)
  • 出版日期:2024-01-30 发布日期:2024-01-30
  • 通讯作者: 胡晟
  • 作者简介:胡晟(1984-),男,云南景洪人,东北大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(61903069); 河北省自然科学基金资助项目(F2020501040); 中央高校基本科研业务费专项资金资助项目(N2223034).

Study on Rheology of RBC by Coupled Model in Fluid-Solid-Electrics Multi-physical Fields

HU Sheng1,2, WANG Yang-cheng1, LYU Xiao-yong1,2   

  1. 1. School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; 2. Hebei Key Laboratory of Micro-nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
  • Online:2024-01-30 Published:2024-01-30
  • Contact: HU Sheng
  • About author:-
  • Supported by:
    -

摘要: 红细胞(red blood cell,RBC)受到流体应力发生机械形变的研究越发成熟,但在结合电场、声场、光场或热力场等多物理场的研究依旧不足.通过COMSOL有限元软件建立了流-固-电(流场、固体场和电场)的3场物理耦合模型,对球形和正常RBC 2种不同形状的RBC分别进行迁移模拟研究.与流-固耦合模型相比,发现电场形成的电渗流使细胞运动迁移时,球形细胞受到的von Mises应力高于正常细胞.电渗流效应形成180μm/s的流速导致RBC变为卷曲“C”形姿态,因形状差异,球形和正常RBC在遇到针尖障碍物时的旋转方向不同.针对本文提出的多物理场耦合模型,两种细胞运动轨迹的差异显示了电渗流对不同形状细胞实施空间分离的可行性.

关键词: 红细胞, 流变学, 电渗流, 电动力学, 微流控, COMSOL

Abstract: The study of the mechanical deformation of red blood cell (RBC) suffered from fluid stress becomes more mature, but is insufficient for multi-physical fields, which involve the combination of electrical, acoustic, optical and thermal fields. Using COMSOL finite element software, a coupled model including three physical fluid-solid-electrics fields is built to study the migration simulation of two different RBC shapes with respect to spherocyte and normocyte. Compared to coupled model only involved in fluid-solid fields, the von Mises stress of spherocyte suffered from is greater than that of the normocyte when the electroosmotic flow generated by the electric field drives the cell migration. The effect of electroosmotic flow at 180μm/s leads to the RBC shape evolving into a “C” gesture. The spherocyte and normocyte have a different direction of rotation when they come across a pin obstacle due to the different shape. Regarding the coupled model with multi-physical fields presented, the motion trajectories of two cells reveal the possibility of separating different shaped cell relying on electroosmosis.

Key words: red blood cell (RBC); rheology; electro-osmosis; electrokinetics; microfluidics, COMSOL

中图分类号: