东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (4): 61-70.DOI: 10.12068/j.issn.1005-3026.2025.20230296
于滨1, 孙红春1,2, 叶大勇1,2
收稿日期:
2023-10-26
出版日期:
2025-04-15
发布日期:
2025-07-01
作者简介:
于 滨(1996―),男,山东枣庄人,东北大学硕士研究生基金资助:
Bin YU1, Hong-chun SUN1,2, Da-yong YE1,2
Received:
2023-10-26
Online:
2025-04-15
Published:
2025-07-01
摘要:
在变负载条件下,基于机器学习的齿轮故障诊断模型面临着依赖特定目标工况样本训练的挑战.为了克服这一局限性,基于齿轮的故障机理,求解了信号中能够反映其健康状态且不随负载变化而改变的特征成分,以此构建了故障频率波形卷积模块,并将其内嵌于卷积神经网络中.此外,为增强网络的特征提取能力,引入多尺度注意力模块.基于上述模块,构建了变负载齿轮故障诊断模型(FWaveNet),将其应用于东北大学的齿轮故障数据集,结果显示其诊断精度相较于现有模型有显著提升.通过特定的信号处理技术和网络架构设计,在负载波动情况下实现了对齿轮健康状态的精确识别,为变负载齿轮故障诊断的工程应用提供了一种解决方案.
中图分类号:
于滨, 孙红春, 叶大勇. 齿轮故障机理嵌入的变负载智能故障诊断[J]. 东北大学学报(自然科学版), 2025, 46(4): 61-70.
Bin YU, Hong-chun SUN, Da-yong YE. Intelligent Fault Diagnosis Under Variable Loads Based on the Embedded Gear Fault Mechanism[J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 61-70.
层 | 层的类型 | 核尺寸 | 步幅 | 输出 |
---|---|---|---|---|
1_FWave Layer | 卷积核 | 1×9 | 1 | 2×1024 |
2_Multi-scale attention | 卷积核 | 1×1, 1×3, 1×5, 1×7 | 1 | 24×1024 |
2_Pool | 最大池化 | 1×2 | 2 | 24×512 |
3_ Multi-scale attention | 卷积核 | 1×1, 1×3, 1×5, 1×7 | 1 | 96×512 |
3_Pool | 最大池化 | 1×2 | 2 | 96×256 |
4_Conv | 卷积核 | 1×3 | 1 | 192×256 |
4_Pool | 最大池化 | 1×2 | 2 | 192×128 |
5_Conv | 卷积核 | 1×3 | 2 | 192×64 |
GAP | 全局平均池化 | — | — | 192×1 |
Full connected_1 | 全连接层 | — | — | 128 |
Full connected_2 | 全连接层 | — | — | 32 |
Full connected_3 | 全连接层 | — | — | 类别 |
表1 FWaveNet架构
Table 1 Architecture of FWaveNet
层 | 层的类型 | 核尺寸 | 步幅 | 输出 |
---|---|---|---|---|
1_FWave Layer | 卷积核 | 1×9 | 1 | 2×1024 |
2_Multi-scale attention | 卷积核 | 1×1, 1×3, 1×5, 1×7 | 1 | 24×1024 |
2_Pool | 最大池化 | 1×2 | 2 | 24×512 |
3_ Multi-scale attention | 卷积核 | 1×1, 1×3, 1×5, 1×7 | 1 | 96×512 |
3_Pool | 最大池化 | 1×2 | 2 | 96×256 |
4_Conv | 卷积核 | 1×3 | 1 | 192×256 |
4_Pool | 最大池化 | 1×2 | 2 | 192×128 |
5_Conv | 卷积核 | 1×3 | 2 | 192×64 |
GAP | 全局平均池化 | — | — | 192×1 |
Full connected_1 | 全连接层 | — | — | 128 |
Full connected_2 | 全连接层 | — | — | 32 |
Full connected_3 | 全连接层 | — | — | 类别 |
健康状态 | 样本数 | ||
---|---|---|---|
A | B | C | |
健康 | 1 000 | 1 000 | 1 000 |
齿根裂纹 | 1 000 | 1 000 | 1 000 |
齿面剥落 | 1 000 | 1 000 | 1 000 |
表2 数据集构成
Table 2 Composition of the dataset
健康状态 | 样本数 | ||
---|---|---|---|
A | B | C | |
健康 | 1 000 | 1 000 | 1 000 |
齿根裂纹 | 1 000 | 1 000 | 1 000 |
齿面剥落 | 1 000 | 1 000 | 1 000 |
模型 | A→B | A→C | B→A | B→C | C→A | C→B | 平均值 |
---|---|---|---|---|---|---|---|
Baseline | 98.96±0.12 | 78.41±1.33 | 99.47±0.1 | 85.38±0.74 | 87.91±1.05 | 91.64±1.55 | 90.30±0.37 |
B+FWave | 99.96±0.01 | 87.72±1.48 | 99.95±0.01 | 88.93±1.07 | 95.02±0.70 | 98.83±0.18 | 95.07±0.33 |
B+MA | 99.07±0.13 | 79.22±0.91 | 99.68±0.05 | 86.93±0.47 | 89.25±1.34 | 92.36±0.66 | 91.09±0.33 |
本文方法 | 99.98±0.01 | 94.82±0.34 | 99.97±0.01 | 98.32±0.27 | 97.62±0.18 | 99.45±0.05 | 98.36±0.14 |
表3 不同模型的消融实验准确率 (%)
Table 3 Accuracy of the ablation experiments for different models
模型 | A→B | A→C | B→A | B→C | C→A | C→B | 平均值 |
---|---|---|---|---|---|---|---|
Baseline | 98.96±0.12 | 78.41±1.33 | 99.47±0.1 | 85.38±0.74 | 87.91±1.05 | 91.64±1.55 | 90.30±0.37 |
B+FWave | 99.96±0.01 | 87.72±1.48 | 99.95±0.01 | 88.93±1.07 | 95.02±0.70 | 98.83±0.18 | 95.07±0.33 |
B+MA | 99.07±0.13 | 79.22±0.91 | 99.68±0.05 | 86.93±0.47 | 89.25±1.34 | 92.36±0.66 | 91.09±0.33 |
本文方法 | 99.98±0.01 | 94.82±0.34 | 99.97±0.01 | 98.32±0.27 | 97.62±0.18 | 99.45±0.05 | 98.36±0.14 |
模型 | A→B | A→C | B→A | B→C | C→A | C→B | 平均值 |
---|---|---|---|---|---|---|---|
AlexNet-T | 92.98±3.00 | 63.50±2.71 | 98.63±0.56 | 68.78±0.96 | 65.63±4.06 | 65.82±3.41 | 75.89±1.05 |
AlexNet-F | 99.97±0.01 | 76.69±0.89 | 99.98±0.01 | 78.78±1.66 | 90.28±2.00 | 97.51±1.61 | 90.54±0.56 |
ResNet-T | 94.46±1.04 | 77.83±0.44 | 97.22±0.34 | 77.36±0.49 | 75.05±1.37 | 90.14±0.64 | 85.34±0.72 |
ResNet-F | 99.35±0.62 | 71.81±0.54 | 99.90±0.10 | 72.80±0.59 | 96.62±0.48 | 95.54±0.60 | 89.33±0.48 |
WKCNN-T | 96.11±1.28 | 54.32±1.10 | 87.14±0.75 | 52.94±1.13 | 48.54±3.09 | 65.07±6.75 | 67.35±1.20 |
WKCNN-F | 99.75±0.09 | 85.43±1.46 | 99.94±0.02 | 80.68±1.41 | 90.34±0.86 | 99.05±0.13 | 92.53±0.39 |
TICNN-T | 86.51±3.25 | 63.86±1.49 | 66.65±0.02 | 51.36±2.58 | 41.96±3.74 | 62.84±3.83 | 62.20±1.45 |
TICNN-F | 99.50±0.24 | 79.84±1.54 | 99.52±0.21 | 83.01±1.56 | 87.65±1.60 | 95.71±1.03 | 90.87±0.60 |
CNNLSTM-T | 99.73±0.17 | 63.67±2.31 | 86.89±1.67 | 59.55±1.78 | 54.87±1.72 | 41.77±1.76 | 67.75±0.72 |
MSDAN-T | 99.74±0.24 | 96.57±2.88 | 99.90±0.04 | 78.50±7.33 | 95.56±2.45 | 82.36±7.71 | 92.11±1.97 |
MSDAN-F | 99.82±0.09 | 94.43±0.69 | 99.83±0.06 | 96.32±0.51 | 99.26±0.24 | 99.39±0.16 | 98.18±0.15 |
DANN-T | 86.11±0.12 | 74.84±0.41 | 90.68±0.26 | 68.69±0.31 | 64.20±0.18 | 54.70±0.33 | 73.20±0.27 |
DANN-F | 87.84±0.64 | 64.96±0.84 | 80.72±0.22 | 77.50±0.37 | 69.10±0.47 | 71.50±0.24 | 89.91±0.46 |
FWaveNet | 99.98±0.01 | 94.82±0.34 | 99.97±0.01 | 98.32±0.27 | 97.62±0.18 | 99.45±0.05 | 98.36±0.14 |
表4 不同模型的准确率 (%)
Table 4 Accuracy of different models
模型 | A→B | A→C | B→A | B→C | C→A | C→B | 平均值 |
---|---|---|---|---|---|---|---|
AlexNet-T | 92.98±3.00 | 63.50±2.71 | 98.63±0.56 | 68.78±0.96 | 65.63±4.06 | 65.82±3.41 | 75.89±1.05 |
AlexNet-F | 99.97±0.01 | 76.69±0.89 | 99.98±0.01 | 78.78±1.66 | 90.28±2.00 | 97.51±1.61 | 90.54±0.56 |
ResNet-T | 94.46±1.04 | 77.83±0.44 | 97.22±0.34 | 77.36±0.49 | 75.05±1.37 | 90.14±0.64 | 85.34±0.72 |
ResNet-F | 99.35±0.62 | 71.81±0.54 | 99.90±0.10 | 72.80±0.59 | 96.62±0.48 | 95.54±0.60 | 89.33±0.48 |
WKCNN-T | 96.11±1.28 | 54.32±1.10 | 87.14±0.75 | 52.94±1.13 | 48.54±3.09 | 65.07±6.75 | 67.35±1.20 |
WKCNN-F | 99.75±0.09 | 85.43±1.46 | 99.94±0.02 | 80.68±1.41 | 90.34±0.86 | 99.05±0.13 | 92.53±0.39 |
TICNN-T | 86.51±3.25 | 63.86±1.49 | 66.65±0.02 | 51.36±2.58 | 41.96±3.74 | 62.84±3.83 | 62.20±1.45 |
TICNN-F | 99.50±0.24 | 79.84±1.54 | 99.52±0.21 | 83.01±1.56 | 87.65±1.60 | 95.71±1.03 | 90.87±0.60 |
CNNLSTM-T | 99.73±0.17 | 63.67±2.31 | 86.89±1.67 | 59.55±1.78 | 54.87±1.72 | 41.77±1.76 | 67.75±0.72 |
MSDAN-T | 99.74±0.24 | 96.57±2.88 | 99.90±0.04 | 78.50±7.33 | 95.56±2.45 | 82.36±7.71 | 92.11±1.97 |
MSDAN-F | 99.82±0.09 | 94.43±0.69 | 99.83±0.06 | 96.32±0.51 | 99.26±0.24 | 99.39±0.16 | 98.18±0.15 |
DANN-T | 86.11±0.12 | 74.84±0.41 | 90.68±0.26 | 68.69±0.31 | 64.20±0.18 | 54.70±0.33 | 73.20±0.27 |
DANN-F | 87.84±0.64 | 64.96±0.84 | 80.72±0.22 | 77.50±0.37 | 69.10±0.47 | 71.50±0.24 | 89.91±0.46 |
FWaveNet | 99.98±0.01 | 94.82±0.34 | 99.97±0.01 | 98.32±0.27 | 97.62±0.18 | 99.45±0.05 | 98.36±0.14 |
1 | 张佳雄, 魏静, 张春鹏,等. 高阶调谐齿轮参数设计及动态响应研究[J].振动工程学报,2020,35(2):369-378. |
Zhang Jia-xiong, Wei Jing, Zhang Chun-peng, et al. Parameter design and dynamic response study of a high-order tuning gear[J]. Journal of Vibration Engineering, 2020,35(2):369-378. | |
2 | Li X Y, Kong X W, Liu Z D, et al. A novel framework for early pitting fault diagnosis of rotating machinery based on dilated CNN combined with spatial dropout[J]. IEEE Access, 2021, 9: 29243-29252. |
3 | Emmanuel S, Yihun Y, Nili A Z, et al. Planetary gear train microcrack detection using vibration data and convolutional neural networks[J]. Neural Computing and Applications, 2021, 33(24): 17223-17243. |
4 | 张智禹, 尹爱军, 谭建. 融合注意力机制的改进DBN变工况齿轮箱故障诊断方法[J]. 振动与冲击, 2021, 40(14): 47-52. |
Zhang Zhi-yu, Yin Ai-jun, Tan Jian. Improved DBN method with attention mechanism for the fault diagnosis of gearboxes under varying working condition[J]. Journal of Vibration and Shock, 2021, 40(14): 47-52. | |
5 | Zhang R, Tao H Y, Wu L F, et al. Transfer learning with neural networks for bearing fault diagnosis in changing working conditions[J]. IEEE Access, 2017, 5: 14347-14357. |
6 | Stacke K, Eilertsen G, Unger J, et al. Measuring domain shift for deep learning in histopathology[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(2): 325-336. |
7 | Li J L, Li X Y, He D, et al. A domain adaptation model for early gear pitting fault diagnosis based on deep transfer learning network[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2020, 234(1): 168-182. |
8 | Zhang Z W, Chen H H, Li S M, et al. Sparse filtering based domain adaptation for mechanical fault diagnosis[J]. Neurocomputing, 2020, 393: 101-111. |
9 | 赵桐, 雷保珍, 王训伟, 等. 基于迁移学习和特征重用的MIM齿轮缺陷检测[J]. 传感器与微系统, 2021, 40(10): 129-131, 135. |
Zhao Tong, Lei Bao-zhen, Wang Xun-wei, et al. MIM gear defect detection based on transfer learning and feature reuse[J]. Transducer and Microsystem Technologies, 2021, 40(10): 129-131, 135. | |
10 | Meng Z, Shi G X, Wang F L. Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness[J]. Mechanism and Machine Theory, 2020, 148: 103786. |
11 | Zghal B, Graja O, Dziedziech K, et al. A new modeling of planetary gear set to predict modulation phenomenon[J]. Mechanical Systems and Signal Processing, 2019, 127: 234-261. |
12 | Luo W, Qiao B J, Shen Z X, et al. A dynamic model to predict modulation sidebands of planetary gear sets with localized planet faults[C]//2018 Prognostics and System Health Management Conference (PHM-Chongqing). Chongqing, 2018: 1269-1273. |
13 | Luo H G, Hatch C, Hanna J, et al. Amplitude modulations in planetary gears[J]. Wind Energy, 2014, 17(4): 505-517. |
14 | Feng Z P, Zuo M J. Vibration signal models for fault diagnosis of planetary gearboxes[J]. Journal of Sound and Vibration, 2012, 331(22): 4919-4939. |
15 | Wang C D, Sun H C, Cao X. Construction of the efficient attention prototypical net based on the time-frequency characterization of vibration signals under noisy small sample[J]. Measurement, 2021, 179: 109412. |
16 | Zhang D, Chen Y Y, Guo F H, et al. A new interpretable learning method for fault diagnosis of rolling bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 3507010. |
17 | Zhang Q S, Wu Y N, Zhu S C. Interpretable convolutional neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8827-8836. |
18 | Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
19 | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 770-778. |
20 | Song X D, Cong Y Y, Song Y F, et al. A bearing fault diagnosis model based on CNN with wide convolution kernels[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(8): 4041-4056. |
21 | Zhang W, Li C H, Peng G L, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing, 2018, 100: 439-453. |
22 | Hao S J, Ge F X, Li Y M, et al. Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks[J]. Measurement, 2020, 159: 107802. |
23 | Wang K, Zhao W, Xu A D, et al. One-dimensional multi-scale domain adaptive network for bearing-fault diagnosis under varying working conditions[J]. Sensors, 2020, 20(21): 6039. |
24 | Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks[J].Journal of Machine Learning Research, 2017,17(1) :2096-2030. |
[1] | 王娜, 崔月磊, 罗亮, 王子从. 基于WP-TRP的滚动轴承故障诊断方法[J]. 东北大学学报(自然科学版), 2025, 46(3): 20-27. |
[2] | 刘炎, 卜齐杰, 赵红晨, 郭鑫. 基于多源异构信息的浮选过程运行状态评价[J]. 东北大学学报(自然科学版), 2024, 45(9): 1217-1226. |
[3] | 刘纪红, 黄熙雄. 基于去噪扩散概率模型的人脸图像修复模型[J]. 东北大学学报(自然科学版), 2024, 45(9): 1227-1234. |
[4] | 宋翰生, 马辉, 刘子濛, 黄文康. 含有不同裂纹类型的弧齿锥齿轮副啮合特性分析[J]. 东北大学学报(自然科学版), 2024, 45(8): 1096-1106. |
[5] | 王宏伟, 李磊, 刘晨宇, 汪洵. 基于变参数模型的智能车辆转向执行器故障诊断[J]. 东北大学学报(自然科学版), 2024, 45(7): 913-920. |
[6] | 刘纪红, 张律恒, 杨海旭. 一种细胞荧光显微图像饱和伪影修复算法[J]. 东北大学学报(自然科学版), 2024, 45(7): 921-927. |
[7] | 李红利, 刘浩雨, 张荣华, 成怡. 基于多维特征矩阵和改进稠密连接网络的情感分类[J]. 东北大学学报(自然科学版), 2024, 45(7): 928-935. |
[8] | 韩东红, 孔彦茹, 展艺萌, 刘源. 音乐多模态数据情感识别方法的研究[J]. 东北大学学报(自然科学版), 2024, 45(6): 776-785. |
[9] | 章伟琪, 王辉明. 混凝土抗压强度的可解释深度学习预测模型[J]. 东北大学学报(自然科学版), 2024, 45(5): 738-744. |
[10] | 单鹏, 张林, 肖洪明, 赵玉良. 融合多尺度注意力机制的冠状病毒肺炎CT诊断方法[J]. 东北大学学报(自然科学版), 2024, 45(12): 1673-1679. |
[11] | 杨爱萍, 方思捷, 邵明福, 张腾飞. 基于Transformer的多尺度水下图像增强网络[J]. 东北大学学报(自然科学版), 2024, 45(12): 1696-1705. |
[12] | 张执锦, 李鹤, 黄宇实, 王文学. 深度残差收缩网络在滚动轴承故障诊断中的应用[J]. 东北大学学报(自然科学版), 2024, 45(11): 1587-1594. |
[13] | 尉健一, 吴菁晶. 基于边缘计算的工业物联网中资源分配算法[J]. 东北大学学报(自然科学版), 2023, 44(8): 1072-1078. |
[14] | 张胜男, 孙志礼, 郭凡逸, 王健. 不同润滑条件下碳钢齿轮齿面磨损和点蚀研究[J]. 东北大学学报(自然科学版), 2023, 44(7): 972-981. |
[15] | 赵玉倩, 王珊, 文怀宇, 韩毅. 齿轮移动感应加热温度均匀性研究[J]. 东北大学学报(自然科学版), 2023, 44(6): 808-816. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||