东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (6): 93-101.DOI: 10.12068/j.issn.1005-3026.2025.20239074
吴海彬1,2, 黄浯锴1
收稿日期:
2023-12-21
出版日期:
2025-06-15
发布日期:
2025-09-02
作者简介:
吴海彬(1973—),男,内蒙古宁城县人,福州大学教授,博士生导师.
基金资助:
Hai-bin WU1,2, Wu-kai HUANG1
Received:
2023-12-21
Online:
2025-06-15
Published:
2025-09-02
摘要:
提出一种基于3D点云的平面角接焊缝特征提取与轨迹规划策略,用于解决焊缝的自动识别与机器人自动跟踪焊接.首先,基于差异点云分割方法提取待焊工件,并进行点云预处理.其次,为获得焊缝特征点,提出了工件结构分割特征提取算法.接着基于非均匀有理B样条(NURBS)曲线的路径拟合方法进行拟合.最后,提出一种焊接点位的机器人位姿估计方法,得到各路径点位姿以供焊接.该策略适用于直线与各种平面曲线焊缝.实验结果表明,该策略能够精确地提取角接焊缝位置并生成所需的轨迹点位姿,各轴最大误差控制在1 mm之内,总耗时不超过18 s,为高效自动化焊接提供参考.
中图分类号:
吴海彬, 黄浯锴. 基于3D点云的平面角接焊缝特征提取与运动跟踪[J]. 东北大学学报(自然科学版), 2025, 46(6): 93-101.
Hai-bin WU, Wu-kai HUANG. Feature Extraction and Motion Tracking of Planar Fillet Weld Seams Based on 3D Point Cloud[J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 93-101.
误差类型 | 本文算法 | 传统算法 |
---|---|---|
X轴最大误差 | 0.514 | 0.718 |
Y轴最大误差 | 0.476 | 0.606 |
Z轴最大误差 | 0.458 | 0.801 |
X轴平均误差 | 0.233 | 0.237 |
Y轴平均误差 | 0.088 | 0.219 |
Z轴平均误差 | 0.080 | 0.120 |
平均距离偏差 | 0.287 | 0.388 |
表1 不同预处理算法下简单直线焊缝测量误差
Table 1 Measurement error of simple straight line weld seam under different pre-processing algorithms mm
误差类型 | 本文算法 | 传统算法 |
---|---|---|
X轴最大误差 | 0.514 | 0.718 |
Y轴最大误差 | 0.476 | 0.606 |
Z轴最大误差 | 0.458 | 0.801 |
X轴平均误差 | 0.233 | 0.237 |
Y轴平均误差 | 0.088 | 0.219 |
Z轴平均误差 | 0.080 | 0.120 |
平均距离偏差 | 0.287 | 0.388 |
焊缝类型 | ME/mm | RMSE/mm | ||||
---|---|---|---|---|---|---|
X轴 | Y轴 | Z轴 | X轴 | Y轴 | Z轴 | |
简单直线 | 0.514 | 0.476 | 0.458 | 0.275 | 0.113 | 0.101 |
平面圆柱 | 0.944 | 0.570 | 0.653 | 0.323 | 0.189 | 0.198 |
平面折线 | 0.927 | 0.893 | 0.869 | 0.326 | 0.570 | 0.407 |
平面曲线 | 0.886 | 0.823 | 0.815 | 0.314 | 0.558 | 0.396 |
平面曲面 | 0.876 | 0.802 | 0.811 | 0.325 | 0.512 | 0.384 |
表2 不同角接焊缝的测量误差
Table 2 Measurement errors for different fillet welds
焊缝类型 | ME/mm | RMSE/mm | ||||
---|---|---|---|---|---|---|
X轴 | Y轴 | Z轴 | X轴 | Y轴 | Z轴 | |
简单直线 | 0.514 | 0.476 | 0.458 | 0.275 | 0.113 | 0.101 |
平面圆柱 | 0.944 | 0.570 | 0.653 | 0.323 | 0.189 | 0.198 |
平面折线 | 0.927 | 0.893 | 0.869 | 0.326 | 0.570 | 0.407 |
平面曲线 | 0.886 | 0.823 | 0.815 | 0.314 | 0.558 | 0.396 |
平面曲面 | 0.876 | 0.802 | 0.811 | 0.325 | 0.512 | 0.384 |
步骤名称 | 运行时间/s |
---|---|
预处理 | 7.015 |
工件提取 | 8.359 |
表3 预处理与工件提取算法运行时间 (extraction algorithms)
Table 3 Running time of pre-processing and artifact
步骤名称 | 运行时间/s |
---|---|
预处理 | 7.015 |
工件提取 | 8.359 |
焊缝类型 | 运行时间/s |
---|---|
简单直线 | 0.804 |
平面圆柱角接 | 0.594 |
平面折线 | 2.118 |
平面曲线 | 2.026 |
平面曲面 | 1.954 |
表4 不同角接焊缝的工件提取后算法运行时间 (extraction for different fillet weld seams)
Table 4 Algorithm running time after workpiece
焊缝类型 | 运行时间/s |
---|---|
简单直线 | 0.804 |
平面圆柱角接 | 0.594 |
平面折线 | 2.118 |
平面曲线 | 2.026 |
平面曲面 | 1.954 |
[1] | 时尚,刘丰刚,黄春平,等.激光复合热源焊接技术的研究进展[J].材料导报,2022,36(11):170-177. |
Shi Shang, Liu Feng-gang, Huang Chun-ping, et al. Research progress of laser hybrid heat source welding technology [J]. Materials Reports, 2022, 36(11):170-177. | |
[2] | Zhang Y K, Jiang Y, Tian X C, et al. A point cloud-based welding trajectory planning method for plane welds[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(3): 1645-1659. |
[3] | Li X D, Li X H, Ge S S, et al. Automatic welding seam tracking and identification[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7261-7271. |
[4] | Ye Z, Fang G, Chen S B, et al. A robust algorithm for weld seam extraction based on prior knowledge of weld seam[J]. Sensor Review, 2013, 33(2): 125-133. |
[5] | Wu K X, Wang T Q, He J J, et al. Autonomous seam recognition and feature extraction for multi-pass welding based on laser stripe edge guidance network[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(9): 2719-2731. |
[6] | Liu F Q, Wang Z Y, Ji Y. Precise initial weld position identification of a fillet weld seam using laser vision technology[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(5): 2059-2068. |
[7] | Xu Y L, Lyu N, Fang G, et al. Welding seam tracking in robotic gas metal arc welding[J]. Journal of Materials Processing Technology, 2017, 248: 18-30. |
[8] | Yang L, Li E, Long T, et al. A high-speed seam extraction method based on the novel structured-light sensor for arc welding robot: a review[J]. IEEE Sensors Journal, 2018, 18(21): 8631-8641. |
[9] | Ibanez I, Aguirre M A, Torralba A, et al. A low cost 3D vision system for positioning welding mobile robots using a FPGA prototyping system[C]//IEEE 2002 28th Annual Conference of the Industrial Electronics Society. Seville, 2002: 1590-1593. |
[10] | Zhou P, Peng R, Xu M, et al. Path planning with automatic seam extraction over point cloud models for robotic arc welding[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5002-5009. |
[11] | Gao J, Li F, Zhang C, et al. A method of D-type weld seam extraction based on point clouds[J]. IEEE Access, 2021, 9: 65401-65410. |
[12] | Kim J, Lee J, Chung M, et al. Multiple weld seam extraction from RGB-depth images for automatic robotic welding via point cloud registration[J]. Multimedia Tools and Applications, 2021, 80(6): 9703-9719. |
[13] | Shen Z Y, Feydy J, Liu P R, et al. Accurate point cloud registration with robust optimal transport[J]. Advances in Neural Information Processing Systems, 2021, 34: 5373-5389. |
[14] | Tsai R Y, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3): 345-358. |
[15] | 朴永杰,邱涛,陈善本.弧焊机器人TCF参数的标定[J].机器人, 2001, 23(2):109-112. |
Yong-jie Piao, Qiu Tao, Chen Shan-ben. Calibration of TCF parameters of arc welding robot [J]. Robot, 2001, 23(2):109-112. | |
[16] | Ni H, Lin X G, Ning X G, et al. Edge detection and feature line tracing in 3D-point clouds by analyzing geometric properties of neighborhoods[J]. Remote Sensing, 2016, 8(9): 710. |
[17] | Zhang J X, Lin X G, Ning X G. SVM-based classification of segmented airborne LiDAR point clouds in urban areas[J]. Remote Sensing, 2013, 5(8): 3749-3775. |
[18] | 潘日晶. NURBS 曲线曲面的显式矩阵表示及其算法[J]. 计算机学报, 2001, 24(4): 358-366. |
Pan Ri-jing. Explicit matrix representation for NURBS curves and surfaces and its algorithm [J].Chinese Journal of Computers, 2001, 24(4): 358-366. | |
[19] | Sun K K, Hua C T, Xiong X M. Research on spatial arc fitting method based on RANSAN algorithm[C]//2019 Chinese Control Conference (CCC) .Guangzhou, 2019: 7534-7538. |
[20] | 刘立君,戴鸿滨,高洪明,等.力觉遥示教姿态几何平面法[J].中国机械工程,2008,19(18):2249-2252. |
Liu Li-jun, Dai Hong-bin, Gao Hong-ming, et al. Geometry arithmetic on the tele-teaching pose based on force sensing [J]. China Mechanical Engineering, 2008,19(18):2249-2252. |
[1] | 李立振, 马淑华, 郭泽旭, 车晓辰. 基于X-ray-RTDETR的X射线图像违禁品检测算法[J]. 东北大学学报(自然科学版), 2025, 46(6): 8-15. |
[2] | 官宏, 熊茜, 马辉, 汪伟伟. 旋转叶片裂纹故障特征提取与分析[J]. 东北大学学报(自然科学版), 2025, 46(3): 60-68. |
[3] | 王植, 王坤, 王梦晴. 多尺度特征融合的Transformer遥感影像超分辨率重建[J]. 东北大学学报(自然科学版), 2024, 45(8): 1178-1184. |
[4] | 沙晓鹏, 曹加奇, 李文静, 秦晔. 单目视频图像序列三维重建方法[J]. 东北大学学报(自然科学版), 2024, 45(12): 1680-1687. |
[5] | 李寿涛, 屈如意, 张宇, 于丁力. 基于变分模态分解的冻结步态识别方法[J]. 东北大学学报(自然科学版), 2023, 44(11): 1543-1548. |
[6] | 刘洋, 闫冬梅, 孟范伟. 基于Transformer改进的两分支行人重识别算法[J]. 东北大学学报(自然科学版), 2023, 44(1): 26-32. |
[7] | 王娜, 李杨, 彭锟. 基于多角度特征提取的舵机故障诊断方法[J]. 东北大学学报(自然科学版), 2022, 43(9): 1240-1249. |
[8] | 于哲舟, 刘岩, 刘元宁. 基于YOLOV3改进的虹膜定位算法[J]. 东北大学学报(自然科学版), 2022, 43(4): 496-501. |
[9] | 闫康, 黄训江, 张强, 王登. 基于At-LSTM的产品创新特征识别[J]. 东北大学学报(自然科学版), 2022, 43(10): 1506-1512. |
[10] | 任朝晖, 于天壮, 丁东, 周世华. 基于VMD-DBN的滚动轴承故障诊断方法[J]. 东北大学学报(自然科学版), 2021, 42(8): 1105-1110. |
[11] | 韩鹏, 郭天, 汪晋宽, 史泽伟. 基于mRMR-ESN的单变量光伏功率预测[J]. 东北大学学报(自然科学版), 2021, 42(2): 174-179. |
[12] | 赵琪珲, 李大鹏, 高天寒, 闻英友. 基于图注意力网络的案件罪名预测方法:CP-GAT[J]. 东北大学学报(自然科学版), 2021, 42(12): 1681-1687. |
[13] | 李晨, 张家伟, 张昊, 汪茜. 基于生成对抗网络的低分化宫颈癌病理图像分类[J]. 东北大学学报:自然科学版, 2020, 41(7): 1054-1061. |
[14] | 侯延彬, 陈炳均, 高宪文. 基于GM-ELM的有杆泵抽油井故障诊断[J]. 东北大学学报:自然科学版, 2019, 40(12): 1673-1678. |
[15] | 纪英俊, 勇晓玥, 刘英林, 刘士新. 基于随机森林的热轧带钢质量分析与预测方法[J]. 东北大学学报:自然科学版, 2019, 40(1): 11-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||