
东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (10): 132-142.DOI: 10.12068/j.issn.1005-3026.2025.20240070
• 资源与土木工程 • 上一篇
徐涛1, 邱景畅1, 袁阳2, 许斌1
收稿日期:2024-03-28
出版日期:2025-10-15
发布日期:2026-01-13
作者简介:徐 涛(1975—),男,湖北随州人,东北大学教授,博士生导师.
基金资助:Tao XU1, Jing-chang QIU1, Yang YUAN2, Bin XU1
Received:2024-03-28
Online:2025-10-15
Published:2026-01-13
摘要:
为揭示寒区岩体工程中岩石在冻融循环作用下变形损伤机制,通过室内冻融循环试验、低场核磁共振试验以及声发射监测试验对饱和砂岩孔隙度变化和宏观强度力学特性进行了分析,建立了饱和岩石冻融循环温度-渗流-应力-损伤耦合模型并进行了验证,开展了饱和砂岩在不同冻融循环次数下孔隙度变化及损伤演化数值模拟.研究结果表明:随着冻融次数增加,砂岩孔隙度增长速率变快,单轴抗压强度降低,且下降速率逐渐加快.孔隙尺寸与数量的变化引起岩石中砂岩强度降低.冻融受载荷作用下砂岩损伤是冻融损伤和载荷损伤共同作用的结果,且随着应变增加,砂岩的损伤变量最终趋于1.研究结果可为寒区岩石力学特性研究提供了理论参考和试验依据.
中图分类号:
徐涛, 邱景畅, 袁阳, 许斌. 饱和砂岩冻融循环损伤演化特性[J]. 东北大学学报(自然科学版), 2025, 46(10): 132-142.
Tao XU, Jing-chang QIU, Yang YUAN, Bin XU. Damage Evolution Characteristics of Saturated Sandstone in Freeze-Thaw Cycles[J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 132-142.
| 石英 | 方英石 | 斜长石 | 钾长石 | 黏土矿物 |
|---|---|---|---|---|
| 21.1 | 22.4 | 29.4 | 22.4 | 4.7 |
表1 砂岩的矿物成分(质量分数) (sandstone(mass fraction) %)
Table 1 Mineral composition and content in
| 石英 | 方英石 | 斜长石 | 钾长石 | 黏土矿物 |
|---|---|---|---|---|
| 21.1 | 22.4 | 29.4 | 22.4 | 4.7 |
烘干 质量/g | 干密度 | 饱和密度 | 饱和含水率% | 纵波波速 |
|---|---|---|---|---|
| g·cm-3 | g·cm-3 | m· | ||
| 64.3 | 2.04 | 2.2 | 7.1 | 2 841 |
表2 砂岩的初始平均物理参数 (sandstone)
Table 2 Initial average physical parameters of
烘干 质量/g | 干密度 | 饱和密度 | 饱和含水率% | 纵波波速 |
|---|---|---|---|---|
| g·cm-3 | g·cm-3 | m· | ||
| 64.3 | 2.04 | 2.2 | 7.1 | 2 841 |
图5 不同冻融次数砂岩轴向应力-声发射曲线(a)—冻融0次; (b)—冻融10次; (c)—冻融20次; (d)—冻融30次; (e)—冻融40次; (f)—冻融50次.
Fig.5 Axial stress-AE curves of sandstone under different freeze-thaw cycles
| 基本属性 | 参数值 |
|---|---|
| 均质度 | 5 |
| 弹性模量 | 4.5 |
| 抗压强度均值/MPa | 50 |
| 孔隙度/% | 16.15 |
| 泊松比 | 0.3 |
| 内摩擦角/(°) | 40° |
| 岩石导热系数/(W·m-1·K-1) | 1.3 |
| 水导热系数/(W·m-1·K-1) | 0.55 |
| 冰导热系数/(W·m-1·K-1) | 2.2 |
表3 砂岩力学指标
Table 3 Mechanical indicators of sandstone
| 基本属性 | 参数值 |
|---|---|
| 均质度 | 5 |
| 弹性模量 | 4.5 |
| 抗压强度均值/MPa | 50 |
| 孔隙度/% | 16.15 |
| 泊松比 | 0.3 |
| 内摩擦角/(°) | 40° |
| 岩石导热系数/(W·m-1·K-1) | 1.3 |
| 水导热系数/(W·m-1·K-1) | 0.55 |
| 冰导热系数/(W·m-1·K-1) | 2.2 |
| [1] | Lyu Z T, Xia C C, Liu W D. Analytical solution of frost heaving force and stress distribution in cold region tunnels under non-axisymmetric stress and transversely isotropic frost heave of surrounding rock [J]. Cold Regions Science and Technology, 2020, 178:103117. |
| [2] | Li Z G, Xu T, Zhao L C, et al. Enhancing stability analysis of open-pit slopes via integrated 3D numerical modeling and data monitoring [J]. Engineering Failure Analysis, 2024, 163: 108495. |
| [3] | Krautblatter M, Funk D, Günzel F K. Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space[J]. Earth Surface Processes and Landforms, 2013, 38(8): 876-887. |
| [4] | Song Y Q, Kausir R. NMR application in unconventional shale reservoirs-a new porous media research frontier [J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 112:17-33. |
| [5] | Gong Y F, Song J X, Wu S Z, et al. Evolution of pore structure and analysis of freeze damage in granite during cyclic freeze-thaw using NMR technique[J]. Engineering Geology, 2024, 335: 107545. |
| [6] | 吴志军, 卢槐, 翁磊, 等. 基于核磁共振实时成像技术的裂隙砂岩渗流特性研究 [J]. 岩石力学与工程学报, 2021, 40(2): 263-275. |
| Wu Zhi-jun, Lu Huai, Weng Lei, et al. Investigations on the seepage characteristics of fractured sandstone based on NMR real-time imaging [J]. Chinese Journal of Rock Mechanics and Engineering, 2021,40(2):263–275. | |
| [7] | 高峰, 熊信, 周科平, 等. 冻融循环作用下饱水砂岩的强度劣化模型 [J]. 岩土力学, 2019, 40(3): 926-932. |
| Gao Feng, Xiong Xin, Zhou Ke-ping, et al. Strength deterioration model of saturated sandstone under freeze-thaw cycle [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932. | |
| [8] | Jiang H B, Li K N, Jin J. The variation characteristics of micro-pore structures of underground rocks in cold regions subject to freezing and thawing cycles [J]. Arabian Journal of Geosciences, 2020, 13:1-7. |
| [9] | Yanaghi J, Liu H Y, Chan A, et al. Experimental, theoretical and numerical modelling of the deterioration and failure process of sandstones subject to freeze-thaw cycles [J]. Engineering Failure Analysis, 2022, 141(1): 106686. |
| [10] | 朱谭谭, 李昂, 黄达, 等. 应力-冻融耦合作用下砂岩变形与损伤特征研究[J]. 岩石力学与工程学报,2023,42(2): 342-351. |
| Zhu Tan-tan, Li Ang, Huang Da, et al. Deformation and damage characteristics of sandstone under the combined action of stress and freeze-thaw cycle [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 342-351. | |
| [11] | Yin W, Wang X Y, Zheng S A, et al. Triaxial creep test and damage model study of layered red sandstone under freeze-thaw cycles[J]. Case Studies in Construction Materials, 2024, 21: e03785. |
| [12] | 肖鹏, 陈有亮, 杜曦, 等. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究 [J]. 岩土工程学报, 2023, 45(4): 805-815. |
| Xiao Peng, Chen You-liang, Du Xi, et al. Mechanical properties of sandstone under freeze-thaw cycles and the study of meso-damage constitutive model [J]. Chinese Journal of Geotechnical Engineering, 2023,45(4): 805-815. | |
| [13] | 王震, 朱珍德, 陈会官, 等. 冻融作用下岩石力-热-水耦合本构模型研究 [J]. 岩土力学, 2019, 40(7): 2608-2616. |
| Wang Zhen, Zhu Zhen-de, Chen Hui-guan, et al. A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616. | |
| [14] | Liu N F, Liang S H, Wang S J, et al. THM model of rock tunnels in cold regions and numerical simulation[J]. Scientific Reports, 2024, 14(1): 3465. |
| [15] | 刘泉声, 康永水, 刘滨, 等. 裂隙岩体水-冰相变及低温温度场-渗流场-应力场耦合研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2181-2188. |
| Liu Quan-sheng, Kang Yong-shui, Liu Bin, et al. Water-ice phase transition and thermo-hydro-mechanical coupling at low temperature in fractured rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2181-2188. | |
| [16] | Nie R S, Zhou J, Chen Z X, et al. Pore structure characterization of tight sandstones via a novel integrated method: a case study of the Sulige gas field, Ordos Basin (Northern China) [J]. Journal of Asian Earth Sciences, 2021, 213: 104739. |
| [17] | Xu B, Xu T, Xue Y C, et al. Phase field modeling of mixed-mode crack in rocks incorporating heterogeneity and frictional damage [J]. Engineering Fracture Mechanics, 2024, 298: 109936. |
| [18] | Zuber B, Marchand J. Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria [J]. Materials and Structures,2004, 37: 257-270. |
| [19] | Zhu W C, Wei C H, Liu J, et al. A model of coal-gas interaction under variable temperatures [J]. International Journal of Coal Geology, 2011, 86(2/3): 213-221. |
| [20] | Xu T, Tang C A, Yang T H, et al. Numerical investigation of coal and gas outbursts in underground collieries [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 905-919. |
| [21] | 朱万成, 魏晨慧, 田军, 等. 岩石损伤过程中的热-流-力耦合模型及其应用初探 [J]. 岩土力学, 2009,30(12): 3851-3857. |
| Zhu Wan-cheng, Wei Chen-hui, Tian Jun, et al. Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application [J]. Rock and Soil Mechanics, 2009, 30(12): 3851-3857. | |
| [22] | Hao S W, Wang H Y, Xia M F, et al. Relationship between strain localization and catastrophic rupture [J]. Theoretical and Applied Fracture Mechanics, 2007, 48(1): 41-49. |
| [23] | Huang S B, Liu Q S, Cheng A P, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology, 2018, 145: 142-150. |
| [1] | 石浩强, 李家栋, 赵鹏, 李勇. 铜合金带材气垫式热处理过程漂浮形态的数值模拟[J]. 东北大学学报(自然科学版), 2025, 46(4): 24-32. |
| [2] | 贾蓬, 毛松泽, 钱一锦, 卢佳亮. 不同加载速率下冻融砂岩的动态劈裂特性[J]. 东北大学学报(自然科学版), 2024, 45(1): 111-119. |
| [3] | 郭嘉欢, 王伯昕, 张添奇, 王诗煜. 纤维编织网增强混凝土抗渗性能研究[J]. 东北大学学报(自然科学版), 2022, 43(9): 1354-1360. |
| [4] | 袁阳, 徐涛, 周广磊, 勒治华. 基于微平面模型和正则化的脆性岩石损伤破裂模拟方法[J]. 东北大学学报(自然科学版), 2022, 43(8): 1141-1148. |
| [5] | 张景科, 刘盾, 马雨君, 张瀚. 弱胶结砂岩水岩作用机制——以庆阳北石窟为例[J]. 东北大学学报(自然科学版), 2022, 43(7): 1019-1033. |
| [6] | 康玉梅, 张乃源, 任超, 陈猛. 单轴压缩作用下CFST柱的声发射特征[J]. 东北大学学报(自然科学版), 2021, 42(5): 720-726. |
| [7] | 刘志彬, 刘锋, 张书建, 白梅. 冻融循环对GCL渗透特性的影响[J]. 东北大学学报:自然科学版, 2020, 41(7): 1027-1032. |
| [8] | 李夔宁, 张宏济, 谢翌, 傅春耘. 基于电-热-老化耦合模型的自适应多段恒流充电研究[J]. 东北大学学报:自然科学版, 2019, 40(9): 1323-1329. |
| [9] | 张俊, 李志伟. 循环荷载作用下沥青混合料的黏弹塑性损伤本构模型[J]. 东北大学学报:自然科学版, 2019, 40(10): 1496-1503. |
| [10] | 齐林, 吕旭阳, 杨本强, 徐礼胜. 基于全卷积网络迁移学习的左心室内膜分割[J]. 东北大学学报:自然科学版, 2018, 39(11): 1577-1582. |
| [11] | 高普, 吴云豪. 制动压力对盘式制动器高频制动尖叫的影响[J]. 东北大学学报:自然科学版, 2017, 38(9): 1303-1308. |
| [12] | 徐礼胜, 郭增智, 覃文军, 王璐. 心脏核磁共振图像左心室底层组织分割方法[J]. 东北大学学报:自然科学版, 2017, 38(10): 1383-1387. |
| [13] | 高强健, 魏国, 姜鑫, 沈峰满. MgO对铁矿球团矿还原后强度的影响[J]. 东北大学学报:自然科学版, 2016, 37(10): 1407-1410. |
| [14] | 石文博, 缪林昌, 王正兴, 骆俊晖. 轨道参数对无砟轨道振动特性的影响分析[J]. 东北大学学报:自然科学版, 2015, 36(7): 1056-1060. |
| [15] | 高强健,魏国,何奕波,沈峰满. MgO对球团矿抗压强度的影响[J]. 东北大学学报:自然科学版, 2013, 34(1): 103-106. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||