东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (4): 24-32.DOI: 10.12068/j.issn.1005-3026.2025.20230317

• 材料与冶金 • 上一篇    下一篇

铜合金带材气垫式热处理过程漂浮形态的数值模拟

石浩强, 李家栋, 赵鹏, 李勇   

  1. 东北大学 数字钢铁国家重点实验室,辽宁 沈阳 110819
  • 收稿日期:2023-11-27 出版日期:2025-04-15 发布日期:2025-07-01
  • 作者简介:石浩强(1997—),男,河南洛阳人,东北大学硕士研究生
    李家栋(1983—),男,辽宁营口人,东北大学副教授,硕士生导师,博士.
  • 基金资助:
    山东省重点研发计划项目(2019JZZY010401);南宁市科技重大专项项目(20201041)

Numerical Simulation of Floating Morphology of Copper Alloy Strip in Air Cushion Heat Treatment Process

Hao-qiang SHI, Jia-dong LI, Peng ZHAO, Yong LI   

  1. State Key Laboratory of Digital Steel,Northeastern University,Shenyang 110819,China. Corresponding author: SHI Hao-qiang,E-mail: shihaoqiang283@163. com
  • Received:2023-11-27 Online:2025-04-15 Published:2025-07-01

摘要:

基于东北大学中试气垫炉的几何模型和实验数据,建立了流固耦合模型,研究了气垫炉中带材漂浮形态的影响因素.结果表明:该模型能够准确模拟不同影响因素下铜带材在气垫炉内的漂浮形态.气垫压力、带材张力、带材厚度是带材漂浮形态的主要影响因素,改变带材上、下表面的气垫压力,带材变形量会明显减少或增大;薄带材的张力每增加一倍,带材的上、下喷嘴附近的最大变形减小为原来1/2;带材厚度每增加0.5 mm,在相同的带材表面气垫压力下,带材的最大变形量显著减小.气垫炉内温度是次要因素,炉温不同,但带材的表面上、下气垫压力相同,带材变形量近似相等.该数值模拟为研究气垫炉内带材悬浮过程中的变形机理提供了新的手段和思路.

关键词: 流固耦合模型, 气垫压力, 漂浮形态, 带材张力, 带材厚度

Abstract:

Based on the geometric model and experimental data of the pilot air cushion furnace at Northeastern University, a fluid-structure coupling model was established to investigate the factors affecting strip floating morphology in the air cushion furnace. The results show that the model can accurately simulate the floating morphology of copper strips in air cushion furnace under different influencing factors. Air cushion pressure, strip tension, and strip thickness are the main influencing factors of strip floating morphology: the deformation of the strip will decrease or increase significantly when the air cushion pressures above and below the strip surface are changed. When the tension of thin strip is doubled, the maximum deformation near the lower and upper nozzles of the strip is reduced to 1/2 of the original value. When the thickness of the strip increases by 0.5 mm, the maximum deformation of the strip decreases significantly under the same surface air cushion pressure. The temperature in the air cushion furnace is a secondary factor. The furnace temperature is different, but the air cushion pressures on the surface and under the strip are the same, and the strip deformation is approximately the same. The numerical simulation provides a new method and idea for studying the deformation mechanism of strip suspension in air cushion furnaces.

Key words: fluid-structure coupling model, air cushion pressure, floating morphology, strip tension, strip thickness

中图分类号: