
东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (11): 1-11.DOI: 10.12068/j.issn.1005-3026.2025.20240087
• 信息与控制 • 下一篇
收稿日期:2024-04-15
出版日期:2025-11-15
发布日期:2026-02-07
通讯作者:
柴天佑
作者简介:孙洪硕(1986—),男,河南封丘人,东北大学博士研究生
基金资助:
Hong-shuo SUN1,2, Dan-wei ZHANG1, Quan XU1, Tian-you CHAI1,3(
)
Received:2024-04-15
Online:2025-11-15
Published:2026-02-07
Contact:
Tian-you CHAI
摘要:
高压辊磨机的运行环境复杂且信号易受到噪声污染,针对传统算法难以有效提取高压辊磨机故障特征以及随机共振系统参数选取困难的问题,提出了一种基于参数寻优自适应重构特征的高压辊磨机运行故障诊断方法.首先,采用集合经验模态分解(ensemble empirical mode decomposition, EEMD)算法将高压辊磨机振动信号分解成若干个本征模态函数(intrinsic mode function, IMF)分量;其次,结合相关系数与互信息构建混合判别准则,自适应地筛选出异常运行特征最强的分量信号进行重构;在此基础上,引入具有种群概率突变机制的樽海鞘群算法(salp swarm algorithm, SSA),构建自适应的随机共振(stochastic resonance, SR)参数寻优策略;最后, 提出基于自适应选取分量重构信号的高压辊磨机运行故障诊断方法.仿真实验结果表明了所提方法的有效性.
中图分类号:
孙洪硕, 张丹威, 徐泉, 柴天佑. 参数寻优自适应重构特征的高压辊磨机运行故障诊断[J]. 东北大学学报(自然科学版), 2025, 46(11): 1-11.
Hong-shuo SUN, Dan-wei ZHANG, Quan XU, Tian-you CHAI. Operation Fault Diagnosis of High-Pressure Grinding Roll Using Adaptive Reconstruction Features with Parameter Optimization[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 1-11.
图3 原始仿真信号经过EEMD分解得到的IMF分量图(a)—IMF1分量; (b)—IMF2分量; (c)—IMF3分量; (d)—IMF4分量; (e)—IMF5分量; (f)—IMF6分量; (g)—IMF7分量; (h)—IMF8分量; (i)—IMF9分量; (j)—IMF10分量; (k)—IMF11分量; (l)—IMF12分量; (m)—残差余项.
Fig.3 IMF component diagram obtained from EEMD of original simulation signal
图5 重构信号经双稳随机共振系统时域波形图和频谱图(a)—时域波形图; (b)—频谱图.
Fig.5 Time-domain waveform and spectrum diagrams of reconstructed signal through bistable stochastic resonance system
图6 高压辊磨机振动信号传感器安装位置及采集装置(a)—现场设备; (b)—振动信号采集卡;(c)—振动信号存储.
Fig.6 Installation position and acquisition device of vibration signal sensor for high-pressure grinding roll
图8 原始振动信号经过EEMD分解的IMF分量图(a)—IMF1分量; (b)—IMF2分量; (c)—IMF3分量; (d)—IMF4分量; (e)—IMF5分量; (f)—IMF6分量; (g)—IMF7分量; (h)—IMF8分量; (i)—IMF9分量; (j)—IMF10分量; (k)—IMF11分量; (l)—IMF12分量; (m)—IMF13分量; (n)—残差余项.
Fig.8 IMF component diagram of original vibration signal after EEMD
图10 蚁群优化随机共振系统的时域波形图和频谱图(a)—蚁群优化算法时域波形图;(b)—蚁群优化算法频谱图.
Fig.10 Time-domain waveform and spectrum diagrams of ant colony-optimized stochastic resonance system
图11 粒子群优化随机共振系统时域波形图和频谱图(a)—粒子群优化算法时域波形图;(b)—粒子群优化算法频谱图.
Fig.11 Time-domain waveform and spectrum diagrams of particle swarm-optimized stochastic resonance system
图12 本文优化随机共振系统的时域波形图和频谱图(a)—本文算法时域波形图; (b)—本文算法频谱图.
Fig.12 Time-domain waveform and spectrum diagrams of optimized stochastic resonance system in this paper
| 方法 | 寻优 次数 | 初始种 群数/个 | 时间/s | 特征 频率/Hz |
|---|---|---|---|---|
| 蚁群算法[ | 150 | 50 | 0.04 | 4.163 |
| 粒子群算法[ | 200 | 50 | 0.08 | 8.325 |
| 本文算法 | 100 | 30 | 0.01 | 2.081 |
表1 3种方法对比结果
Table 1 Comparison results of three methods
| 方法 | 寻优 次数 | 初始种 群数/个 | 时间/s | 特征 频率/Hz |
|---|---|---|---|---|
| 蚁群算法[ | 150 | 50 | 0.04 | 4.163 |
| 粒子群算法[ | 200 | 50 | 0.08 | 8.325 |
| 本文算法 | 100 | 30 | 0.01 | 2.081 |
| [1] | Coussat A, Rit S, Clackdoyle R, et al. Region-of-interest CT reconstruction using object extent and singular value decomposition[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6(5): 537-551. |
| [2] | Chai M Y, Gao Z Y, Li Y Q, et al. An approach for identifying corrosion damage from acoustic emission signals using ensemble empirical mode decomposition and linear discriminant analysis[J]. Measurement Science and Technology, 2022, 33(6): 065018. |
| [3] | Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of The Royal Society Interface, 2005, 2(5):443-454. |
| [4] | Libanda B, Nkolola N B. An ensemble empirical mode decomposition of consecutive dry days in the Zambezi Riparian Region: implications for water management[J]. Physics and Chemistry of the Earth, (Parts A/B/C), 2022, 126: 103147. |
| [5] | 曹源, 宋迪, 胡小溪, 等. 基于改进时域多尺度散布熵与支持向量机的转辙机故障诊断[J]. 电子学报, 2023, 51(1): 117-127. |
| Cao Yuan, Song Di, Hu Xiao-xi, et al. Fault diagnosis of railway point machine based on improved time-domain multiscale dispersion entropy and support vector machine[J]. Acta Electronica Sinica, 2023, 51(1): 117-127. | |
| [6] | Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, 2011: 4144-4147. |
| [7] | Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14(11): L453-L457. |
| [8] | Peters K J H, Geng Z, Malmir K, et al. Extremely broadband stochastic resonance of light and enhanced energy harvesting enabled by memory effects in the nonlinear response.[J]. Physical Review Letters, 2021, 126(21): 213901. |
| [9] | Qiao Z J, Lei Y G, Lin J, et al. Stochastic resonance subject to multiplicative and additive noise: the influence of potential asymmetries[J]. Physical Review E, 2016, 94(5): 052214. |
| [10] | Su D X, Zheng R C, Nakano K, et al. On square-wave-driven stochastic resonance for energy harvesting in a bistable system[J]. AIP Advances, 2014, 4(11): 117140. |
| [11] | Qiao Z J, Chen S, Lai Z H, et al. Harmonic-Gaussian double-well potential stochastic resonance with its application to enhance weak fault characteristics of machinery[J]. Nonlinear Dynamics, 2023, 111(8): 7293 -7307. |
| [12] | 孔德阳, 彭华, 马金全. 基于人工鱼群算法的自适应随机共振方法研究[J].电子学, 2017, 45(8): 1864-1872. |
| Kong De-yang, Peng Hua, Ma Jin-quan. Adaptive stochastic resonance method based on artificial-fish swarm optimization[J]. Acta Electronica Sinica, 2017,45(8): 1864-1872. | |
| [13] | 瞿铁, 李詠侠, 伏坤, 等. 高压辊磨机用硬质合金柱钉的磨损和断裂行为[J]. 中国有色金属学报, 2024, 34(10): 3394-3405. |
| Qu Tie, Li Yong-xia, Fu Kun, et al. Wear and fracture behavior of cemented carbide column nails for high-pressure roller mills[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(10): 3394-3405. | |
| [14] | 范威,水沛,谢传东,等.基于Archard模型与DEM仿真的高压辊磨机磨损演化规律研究与优化[J].金属矿山,2024(6):173-180. |
| Fan Wei, Shui Pei, Xie Chuan-dong, et al. Research and optimization of wear evolution law of high pressure roller mill based on archard model and DEM simulation[J]. Metal Mine, 2024(6): 173-180. | |
| [15] | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
| [16] | Cao Y, Zhang Y Z, Wen T, et al. Research on dynamic nonlinear input prediction of fault diagnosis based on fractional differential operator equation in high-speed train control system[J]. Chaos, 2019, 29(1): 013130. |
| [17] | 张敏,蔡振宇,包珊珊.基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J].西南交通大学学报, 2019, 54(3): 633-639, 662. |
| Zhang Min, Cai Zhen-yu, Bao Shan-shan. Fault diagnosis of rolling bearing based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639, 662. | |
| [18] | 周平,刘记平.基于数据驱动多输出ARMAX建模的高炉十字测温中心温度在线估计[J].自动化学报, 2018, 44(3): 552-561. |
| Zhou Ping, Liu Ji-ping. Data-driven multi-output ARMAX modeling for online estimation of central temperatures for cross temperature measuring in blast furnace ironmaking[J]. Acta Automatica Sinica, 2018, 44(3): 552-561. | |
| [19] | Qiao Z J, Pan Z R. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient [J]. Measurement Science and Technology, 2015, 26(8): 085014. |
| [20] | Kamimura R. Cost-conscious mutual information maximization for improving collective interpretation of multi-layered neural networks[J]. Neurocomputing, 2020, 409: 259-274. |
| [21] | 张丹威,王晓东,黄国勇.相关系数SVD增强随机共振的单向阀故障诊断[J].电子学, 2018, 46(11):2696-2704. |
| Zhang Dan-wei, Wang Xiao-dong, Huang Guo-yong. Check valve fault diagnosis with correlation coefficient SVD enhanced stochastic resonance[J]. Acta Electronica Sinica, 2018, 46(11): 2696-2704. | |
| [22] | 牟竹青, 冯早, 黄国勇, 等. 自适应随机共振和DEMD的单向阀早期故障诊断[J]. 机械科学与技术, 2018, 37(4): 537-544. |
| Mu Zhu-qing, Feng Zao, Huang Guo-yong, et al. Early fault diagnosis of check valve with adaptive stochastic resonance and DEMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 537-544. | |
| [23] | 李明宇, 张丹威. 高压辊磨运行工况识别算法研究[J].金属矿山, 2022(4): 188-194. |
| Li Ming-yu, Zhang Dan-wei. Research on conditions identification algorithm for high-pressure grinding roll[J]. Metal Mine, 2022(4): 188-194. | |
| [24] | Qiao Z J, Lei Y G, Li N P. Applications of stochastic resonance to machinery fault detection: a review and tutorial[J]. Mechanical Systems and Signal Processing, 2019, 122: 502-536. |
| [1] | 韩清凯, 赵宇来, 马树军, 于长鑫. 感知微系统内嵌式智能轴承关键技术与应用展望[J]. 东北大学学报(自然科学版), 2025, 46(7): 94-107. |
| [2] | 罗亨发, 于天壮, 周世华. 基于GRM-IConvNeXt模型的滚动轴承故障诊断方法[J]. 东北大学学报(自然科学版), 2025, 46(5): 62-70. |
| [3] | 于滨, 孙红春, 叶大勇. 齿轮故障机理嵌入的变负载智能故障诊断[J]. 东北大学学报(自然科学版), 2025, 46(4): 61-70. |
| [4] | 王娜, 崔月磊, 罗亮, 王子从. 基于WP-TRP的滚动轴承故障诊断方法[J]. 东北大学学报(自然科学版), 2025, 46(3): 20-27. |
| [5] | 王宏伟, 李磊, 刘晨宇, 汪洵. 基于变参数模型的智能车辆转向执行器故障诊断[J]. 东北大学学报(自然科学版), 2024, 45(7): 913-920. |
| [6] | 张执锦, 李鹤, 黄宇实, 王文学. 深度残差收缩网络在滚动轴承故障诊断中的应用[J]. 东北大学学报(自然科学版), 2024, 45(11): 1587-1594. |
| [7] | 陈一馨, 张婷, 刘永刚, 陈晶. 基于改进樽海鞘群算法的提梁机主梁轻量化设计方法[J]. 东北大学学报(自然科学版), 2023, 44(2): 223-232. |
| [8] | 王宏伟, 张昊天, 韩杰, 刘晨宇. 不确定车辆电子稳定控制系统传感器故障估计[J]. 东北大学学报(自然科学版), 2023, 44(1): 1-8. |
| [9] | 王娜, 李杨, 彭锟. 基于多角度特征提取的舵机故障诊断方法[J]. 东北大学学报(自然科学版), 2022, 43(9): 1240-1249. |
| [10] | 侯东晓, 穆金涛, 方成, 时培明. 基于GADF与引入迁移学习的ResNet34对变速轴承的故障诊断[J]. 东北大学学报(自然科学版), 2022, 43(3): 383-389. |
| [11] | 任朝晖, 于天壮, 丁东, 周世华. 基于VMD-DBN的滚动轴承故障诊断方法[J]. 东北大学学报(自然科学版), 2021, 42(8): 1105-1110. |
| [12] | 罗忠, 徐迪, 李雷, 马辉. 基于改进二阶循环平稳解卷积的轴承故障检测方法[J]. 东北大学学报(自然科学版), 2021, 42(5): 673-678. |
| [13] | 王新刚, 王超, 韩凯忠. 基于优化VMD和MCKD的滚动轴承早期故障诊断方法[J]. 东北大学学报(自然科学版), 2021, 42(3): 373-381. |
| [14] | 张永超, 李琦, 任朝晖, 周世华. 基于域适应与分类器差异的滚动轴承跨域故障诊断[J]. 东北大学学报(自然科学版), 2021, 42(3): 367-372. |
| [15] | 李国军, 李依擎, 邱勇. 园区供热管网泄漏工况建模及分析[J]. 东北大学学报:自然科学版, 2020, 41(10): 1402-1409. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||