东北大学学报(自然科学版) ›› 2007, Vol. 28 ›› Issue (9): 1282-1284+1292.DOI: -

• 论著 • 上一篇    下一篇

基于模糊聚类的PSO-神经网络预测热连轧粗轧宽度

丁敬国;焦景民;昝培;刘相华;   

  1. 东北大学轧制技术及连轧自动化国家重点实验室;东北大学轧制技术及连轧自动化国家重点实验室;攀枝花新钢钒股份有限公司;东北大学轧制技术及连轧自动化国家重点实验室 辽宁沈阳110004;辽宁沈阳110004;攀枝花新钢钒股份有限公司;四川攀枝花617062;四川攀枝花617062;辽宁沈阳110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2007-09-15 发布日期:2013-06-24
  • 通讯作者: Ding, J.-G.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(50104004)

Hot strip width prediction during rough rolling with PSO-neural network based on fuzzy clustering

Ding, Jing-Guo (1); Jiao, Jing-Min (1); Zan, Pei (2); Liu, Xiang-Hua (1)   

  1. (1) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, China; (2) Hot Strip Mill of Panzhihua Iron and Steel Group Co. Ltd., Panzhihua 617062, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2007-09-15 Published:2013-06-24
  • Contact: Ding, J.-G.
  • About author:-
  • Supported by:
    -

摘要: 为了提高热连轧粗轧宽度的控制精度,以攀钢热轧板厂实测数据为基础,采用粒子群优化算法训练神经网络并将其用于热连轧粗轧宽度预报,通过模糊聚类分析方法进行数据分析,科学选取学习样本,解决了由于样本多、学习速度慢的问题.实测数据运算表明,这种方法可避免神经网络陷入局部极小,带钢粗轧宽度的预报精度控制在6 mm以内,并且训练速度也有很大程度的改善,神经网络结构也得到优化,具有很大的应用潜力.

关键词: 粒子群算法, 神经网络, 模糊聚类, 粗轧, 宽度预报

Abstract: To improve the width control precision of hot strip during rough rolling for prediction, the PSO (particle swarm optimization) algorithm is used to train neural network with the actually measured data in PANSTEEL. Then, the fuzzy clustering analysis is used to preprocess the data with reasonable sampling for self-learning so as to solve the problem of superfluous samples and slow learning speed. The calculation results of measured data showed that this method can control the prediction precision of hot strip width during rough rolling within ±6 mm with optimized structure of neural network and learning speed greatly improved. So, it is regarded as highly potential in application.

中图分类号: