东北大学学报(自然科学版) ›› 2009, Vol. 30 ›› Issue (4): 526-530.DOI: -

• 论著 • 上一篇    下一篇

基于反馈评判的SPIT检测与防范方法

何光宇;闻英友;赵宏;   

  1. 东北大学信息科学与工程学院;
  • 收稿日期:2013-06-22 修回日期:2013-06-22 出版日期:2009-04-15 发布日期:2013-06-22
  • 通讯作者: He, G.-Y.
  • 作者简介:-
  • 基金资助:
    国家高技术研究发展计划项目(2006AA01Z413);;

On the SPIT detection and prevention method based on feedback judgement

He, Guang-Yu (1); Wen, Ying-You (1); Zhao, Hong (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
  • Received:2013-06-22 Revised:2013-06-22 Online:2009-04-15 Published:2013-06-22
  • Contact: He, G.-Y.
  • About author:-
  • Supported by:
    -

摘要: 针对全IP融合网络环境下的垃圾语音信息(spam over Internet telephony,SPIT)隐患,提出了一种基于反馈评判的检测与防范方法.该方法引入了终端用户的参与,结合信任与信誉机制,能够简单、高效、无损地利用直接和间接的反馈信息.改进的信任度与信誉度推理算法充分体现了SPIT行为的分布特性并反映了影响评判结果的各因素的权重关系.增量学习算法保证了信任度和信誉度的实时性,融合算法则动态调整了信任度和信誉度在评判中的角色.实验及分析表明上述方法具有较好的准确性和敏感性,能够对SPIT进行有效的检测及防范.

关键词: SPIT, 反馈评判, 共轭Dirichlet分布, 加权朴素贝叶斯, 融合

Abstract: To resolve the SPIT hidden trouble in the ALL-IP fusion network, a detection/prevention method based on feedback judgement is proposed. Introducing the participation of end users and combining the trust with reputation mechanism, either the direct or indirect information feedback can be utilized simply and effectively without loss. The improved inference algorithm for trustworthiness and reputability fully embodies the distribution characteristics of SPIT behavior and reflects the weighting relation between different influencing factors on judged result. In addition, the incremental learning algorithm provides the real-time trustworthiness and reputability and the fusion of them adjusts their individual role in feedback judgement dynamically. Experiment and analysis results showed the high accuracy and sensitivity of the proposed method, by which the SPIT can be detected and prevented efficiently.

中图分类号: