东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (1): 6-10.DOI: 10.12068/j.issn.1005-3026.2019.01.002

• 信息与控制 • 上一篇    下一篇

参数化水平集活动轮廓模型的快速图像分割算法

陈红1,2 , 于晓升1, 吴成东1, 孙鹏2   

  1. (1. 东北大学 机器人科学与工程学院, 辽宁 沈阳110819; 2. 鞍山师范学院 物理科学与技术学院, 辽宁 鞍山114005)
  • 收稿日期:2017-10-27 修回日期:2017-10-27 出版日期:2019-01-15 发布日期:2019-01-28
  • 通讯作者: 陈红
  • 作者简介:陈红(1978-),女,辽宁辽中人,东北大学博士研究生,鞍山师范学院副教授; 吴成东(1960-),男,辽宁大连人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61503274, 61603080).

Fast Image Segmentation Algorithm Based on Parametric Level Set Active Contour Model

CHEN Hong1,2, YU Xiao-sheng1, WU Cheng-dong1, SUN Peng2   

  1. 1. School of Robot Science and Engineering, Northeastern University, Shenyang 110819, China; 2. College of Physics Science and Technology, Anshan Normal University, Anshan 114005, China.
  • Received:2017-10-27 Revised:2017-10-27 Online:2019-01-15 Published:2019-01-28
  • Contact: CHEN Hong
  • About author:-
  • Supported by:
    -

摘要: 为了提高图像分割的速度,提出一种参数化水平集活动轮廓模型的快速图像分割算法.该算法中的水平集函数由参数向量确定,而非带符号距离函数,降低了水平集函数的维度.将参数化的水平集函数嵌入到经典的LGDF(local Gaussian distribution fitting)模型中进行图像分割,不需要重新初始化和额外的正则项,同时可选择较大迭代步长.实验结果表明:所提方法能够有效地分割超声、CT和核磁等医学图像,与带有正则项的分割算法LGDF和最近提出的快速分割算法MSLCV相比,在保证分割精度的同时,计算速度得到了明显提高.

关键词: 水平集, 活动轮廓模型, 图像分割, LGDF模型, MSLCV模型

Abstract: In order to improve the segmentation speed, a fast image segmentation method based on parametric level set active contour model was proposed. The level set function was determined by the parameter vector, rather than the signed distance function, which reduces the dimension of the level set function. The parametric level set function was embedded into the classical LGDF(local Gaussian distribution fitting) segmentation algorithm, and it does not need to be re-initialized or additional regular terms, and it can choose larger step length. The experiment results show that the proposed method can effectively segment medical images such as ultrasound, CT and MR medical images. Compared with the LGDF model with regular terms and the recently proposed fast segmentation algorithm MSLCV, in the case of similar segmentation accuracy, the calculation speed of the proposed method is improved obviously.

Key words: level set, active contour model, image segmentation, LGDF model, MSLCV model

中图分类号: