东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (5): 625-629.DOI: 10.12068/j.issn.1005-3026.2019.05.004

• 信息与控制 • 上一篇    下一篇

采样频率与数据长度对中心动脉波形重建的影响

徐礼胜, 姜志豪, 姚阳, 刘文彦   

  1. (东北大学 中荷生物医学与信息工程学院, 辽宁 沈阳110169)
  • 收稿日期:2018-04-02 修回日期:2018-04-02 出版日期:2019-05-15 发布日期:2019-05-17
  • 通讯作者: 徐礼胜
  • 作者简介:徐礼胜(1975-),男,安徽安庆人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61773110,61374015); 中央高校基本科研业务费专项资金资助项目(N161904002).

Effects of Sampling Frequency and Data Length on the Central Aortic Waveform Reconstruction

XU Li-sheng, JIANG Zhi-hao, YAO Yang, LIU Wen-yan   

  1. Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang 110169, China.
  • Received:2018-04-02 Revised:2018-04-02 Online:2019-05-15 Published:2019-05-17
  • Contact: XU Li-sheng
  • About author:-
  • Supported by:
    -

摘要: 传递函数法重建CAP(central aortic pressure)多是基于自回归各态历经(auto regressive eXogenous, ARX)模型或傅里叶变换,未考虑采样频率、数据长度.为了研究采样频率和数据长度对重建CAP的影响,基于ARX模型和傅里叶变换,重建CAP并分析误差.结果表明,采样频率100Hz,数据长度大于3s时,基于ARX模型重建CAP效果较好(均方根误差(306.6±80.0)Pa,波形匹配度89%);基于傅里叶变换的算法对采样频率不敏感,数据长度为6s时效果较好(均方根误差(493.3±320.0)Pa,波形匹配度84%).

关键词: 中心动脉压力波形, 传递函数, ARX模型, 傅里叶变换, 采样频率, 数据长度

Abstract: Non-invasive CAP(central aortic pressure)reconstruction is mostly based on the auto regressive eXogenous(ARX)model or Fourier transform in transfer function method, without considering the factors such as sampling frequency and data length. Based on the ARX model and the Fourier transform, the error of reconstruction CAP was analyzed for studing the effects of sampling frequency and data length on the CAP. The results show that when sampling frequency is 100Hz and data length is greater than 3s, CAP can be better reconstructed by ARX model(RMSE:(306.6±80.0)Pa; FIT: 89%). The algorithm based on the Fourier transform is insensitive to sampling frequency. When data length is set to 6s, the reconstructed CAP has a better performance(RMSE:(493.3±320.0)Pa,FIT:84%).

Key words: central aortic pressure wave, transfer function, ARX model, Fourier transform, sampling frequency, data length

中图分类号: