东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (7): 968-973.DOI: 10.12068/j.issn.1005-3026.2019.07.011

• 机械工程 • 上一篇    下一篇

基于系统响应的履带车辆路面识别方法

王鑫, 顾亮, 李晓雷, 董明明   

  1. (北京理工大学 机械与车辆学院, 北京100081)
  • 收稿日期:2018-06-11 修回日期:2018-06-11 出版日期:2019-07-15 发布日期:2019-07-16
  • 通讯作者: 王鑫
  • 作者简介:王鑫(1991-),男,内蒙古乌兰察布人,北京理工大学博士研究生; 顾亮(1958-),男,山东淄博人,北京理工大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金-中国汽车产业创新发展联合基金资助项目(U1564210).

Road Identification Method for Tracked Vehicles Based on System Response

WANG Xin, GU Liang, LI Xiao-lei, DONG Ming-ming   

  1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
  • Received:2018-06-11 Revised:2018-06-11 Online:2019-07-15 Published:2019-07-16
  • Contact: DONG Ming-ming
  • About author:-
  • Supported by:
    -

摘要: 为提高履带车辆对不同路面适应能力,基于多体动力学仿真平台建立履带车辆及多种路面动力学仿真模型.通过履带车与路面模型的行驶仿真,采集车体质心动力学响应时域信号,并应用小波变换分解该信号.采用距离评估技术提取上述分解信号的敏感特征向量,利用BP神经网络基于上述敏感特征向量提出路面识别方法.搭建小型履带模型车测试系统,使模型车行驶于实际路面并进行现场测试,采集测试过程中履带模型车车体质心、负重轮及履带板动力学响应时域信号,对提出的路面识别方法进行验证.结果表明,该路面识别方法识别精度达到99%,该方法对路面类型具有高度识别能力.

关键词: 履带车辆, BP神经网络, 小波变换, 路面识别, 试验验证

Abstract: In order to improve tracked vehicles’ adaptability to different types of road surfaces, a dynamic simulation model of tracked vehicles and various types of road was established based on the multi-body simulation platform. The time-domain dynamic response signals of vehicle centroid were collected through the driving simulation of tracked vehicles and road models, and the signals were decomposed by wavelet transformation. Distance evaluation technique was used to extract sensitive feature vectors. A road identification method based on the above sensitive feature vectors was proposed by using BP neural network. In order to verify the validity of the method, a test system based on small tracked vehicle models was built.The vehicle model drived on the actual road to collect the time-domain dynamic response signals of tracked vehicles′ body centroid, load wheels and track-terrain interaction. The results showed that the identification precision of the method is 99%. This method has a high identiciation ability for road types.

Key words: tracked vehicle, BP neural network, wavelet transformation, road identification, experimental verification

中图分类号: