东北大学学报:自然科学版 ›› 2020, Vol. 41 ›› Issue (3): 332-336.DOI: 10.12068/j.issn.1005-3026.2020.03.006
孟琭1, 钟健平1, 李楠2
MENG Lu1, ZHONG Jian-ping1, LI Nan2
摘要: 基于生成对抗网络(generative adversarial networks,GAN),提出了面向肝脏肿瘤CT图像仿真数据集生成深度学习算法.首先,将CT图像数据文件进行格式解析,单独保存为PNG格式的图像文件;然后,将肝脏病变区域统一标注为白色,并结合肝脏CT原图组成配对图片;最后,用生成对抗网络的pix2pix架构仿真生成病变肝脏图像.为将生成图像与目标图像进行定量分析、比较,本文采用了峰值信噪比和结构相似性作为模型的评价指标.实验结果表明,本文算法所生成的肝脏肿瘤CT仿真数据集的平均峰值信噪比为64.72dB,平均结构相似性为0.9973,证明了所生成的仿真图像数据有着非常高的真实度.
中图分类号: