东北大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (3): 344-349.DOI: 10.12068/j.issn.1005-3026.2022.03.006

• 信息与控制 • 上一篇    下一篇

基于分层注意力循环神经网络的司法案件刑期预测

李大鹏1,2, 赵琪珲1, 邢铁军2, 赵大哲1   

  1. (1. 东北大学 计算机科学与工程学院, 辽宁 沈阳110169; 2. 东软集团股份有限公司, 辽宁 沈阳110179)
  • 修回日期:2021-01-26 接受日期:2021-01-26 发布日期:2022-05-18
  • 通讯作者: 李大鹏
  • 作者简介:李大鹏(1982-),男,辽宁沈阳人,东北大学博士研究生; 赵大哲(1960-),女,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家重点研发计划项目(2018YFC0830601); 中央高校基本科研业务费专项资金资助项目(N171802001); 沈阳市科技计划项目(21-104-1-12).

Prison Term Prediction of Judicial Cases Based on Hierarchical Attentive Recurrent Neural Network

LI Da-peng1,2, ZHAO Qi-hui1, XING Tie-jun2, ZHAO Da-zhe1   

  1. 1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China; 2. Neusoft Corporation, Shenyang 110179, China.
  • Revised:2021-01-26 Accepted:2021-01-26 Published:2022-05-18
  • Contact: LI Da-peng
  • About author:-
  • Supported by:
    -

摘要: 为了解决刑期预测任务准确率较差的问题,提出一种基于多通道分层注意力循环神经网络的司法案件刑期预测模型.该模型对传统的循环神经网络模型进行了改进,引入了BERT词嵌入、多通道模式和分层注意力机制,将刑期预测转化为文本分类问题.模型采用分层的双向循环神经网络对案件文本进行建模,并通过分层注意力机制在词语级和句子级两个层面捕获不同词语和句子的重要性,最终生成有效表征案件文本的多通道嵌入向量.实验结果表明:对比现有的基于深度学习的刑期预测模型,本文提出的模型具有更高的预测性能.

关键词: 刑期预测;分层注意力机制;双向门控循环单元;多通道;文本分类

Abstract: In order to solve the problem of poor accuracy of prison term prediction, a prison term prediction model was proposed on the basis of multi-channel hierarchical attentive recurrent neural network. The model improves the traditional recurrent neural network, introduces BERT word embedding, multichannel mode and hierarchical attention mechanism, and transforms the prison term prediction task into text classification problem. The model uses hierarchical bidirectional recurrent neural network to model the legal case text, and captures the importance of different words and sentences at word level and sentence level through hierarchical attention mechanism. Finally, a multi-channel embedding vector that effectively represents the case text is generated. The experimental results show that the proposed model has higher prediction performance compared with the existing prison term prediction model based on deep learning.

Key words: prison term prediction; hierarchical attention mechanism; bidirectional gated recurrent unit; multi-channel; text classification

中图分类号: