东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (11): 1587-1594.DOI: 10.12068/j.issn.1005-3026.2024.11.009

• 机械工程 • 上一篇    下一篇

深度残差收缩网络在滚动轴承故障诊断中的应用

张执锦, 李鹤(), 黄宇实, 王文学   

  1. 东北大学 机械工程与自动化学院,辽宁 沈阳 110819
  • 收稿日期:2023-06-05 出版日期:2024-11-15 发布日期:2025-02-24
  • 通讯作者: 李鹤
  • 作者简介:张执锦(1995-),男,辽宁盘锦人,东北大学博士研究生
    李 鹤(1975-),男,河南方城人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51675091)

Application of Deep Residual Shrinkage Network in Rolling Bearing Fault Diagnosis

Zhi-jin ZHANG, He LI(), Yu-shi HUANG, Wen-xue WANG   

  1. School of Mechanical Engineering & Automation,Northeastern University,Shenyang 110819,China.
  • Received:2023-06-05 Online:2024-11-15 Published:2025-02-24
  • Contact: He LI
  • About author:LI He,E-mail: hli@mail.neu.edu.cn

摘要:

针对滚动轴承故障在强噪声环境下难以进行精准诊断的问题,提出一种基于池化融合的深度残差收缩网络用于滚动轴承故障诊断.首先,通过引入残差连接避免由于网络过深而带来的梯度消失或爆炸的风险;然后,采用多尺度池化特征融合提取振动信号更丰富的局部特征并通过注意力机制自动推导软阈值函数的最优阈值进行自适应去噪;最后,通过带标签的滚动轴承故障数据对所提网络进行训练,以实现滚动轴承在强噪声环境下的精准故障诊断.实验结果表明,在不同信噪比(signal?to?noise ratio,SNR)的噪声条件下,基于池化融合的深度残差收缩网络与传统的模型相比能实现更高的故障诊断精度.

关键词: 深度残差收缩网络, 池化融合, 注意力机制, 滚动轴承, 故障诊断

Abstract:

Given that it is difficult to accurately diagnose rolling bearing faults in a strong noise environment, a deep residual shrinkage network is proposed with pooling fusion for rolling bearing fault diagnosis. Firstly, the proposed method employs residual connections to avoid the risk of gradient vanishing or explosion due to excessive network depth. Then, the approach uses multi?scale pooling feature fusion to extract more comprehensive local features from vibration signals, and an attention mechanism to automatically derive the optimal threshold of a soft threshold function. Finally, the network is trained through labeled data to achieve the accurate fault diagnosis of rolling bearings in a strong noise environment. Experiment results show that the deep residual shrinkage network based on pooling fusion can outperform the traditional models in diagnosing rolling bearing faults under noise conditions with different SNRs.

Key words: deep residual shrinkage network, pooling fusion, attention mechanism, rolling bearing, fault diagnosis

中图分类号: