东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (2): 76-84.DOI: 10.12068/j.issn.1005-3026.2025.20230240
收稿日期:
2023-08-18
出版日期:
2025-02-15
发布日期:
2025-05-20
通讯作者:
李小彭
作者简介:
李小彭(1976—),男,江西宁都人,东北大学教授,博士生导师.
基金资助:
Xiao-peng LI1,2(), Xue-dong LI1, Xing FAN1, Bing SHI2
Received:
2023-08-18
Online:
2025-02-15
Published:
2025-05-20
Contact:
Xiao-peng LI
摘要:
巡检机器人在风载荷作用下会发生一定的摆动,从而导致巡检结果准确性和可靠性降低,参考旋翼类飞行器设计了巡检机器人在风载荷下的平衡机构.首先,利用电机的动力学方程推导电机电压和转速之间的传递函数,使用叶素法建立旋翼产生的升力与旋翼转速之间的关系,从而建立平衡机构的输入电压和输出升力之间的联系.其次,分析不同方向的风载荷对巡检机器人工作状态的影响,建立了巡检机器人在横向风载荷下的摆动数学模型.最后,将模糊PID(proportional integral derivative)应用于平衡机构的控制中,开展了巡检机器人的数值仿真和样机实验.结果表明:所设计的平衡机构可以有效抑制巡检机器人在风载荷中的摆动.
中图分类号:
李小彭, 李雪东, 樊星, 石冰. 基于模糊PID控制的输电线路巡检机器人自平衡机理分析[J]. 东北大学学报(自然科学版), 2025, 46(2): 76-84.
Xiao-peng LI, Xue-dong LI, Xing FAN, Bing SHI. Analysis of Self-Balancing Mechanism of Transmission Line Inspection Robot Based on Fuzzy PID Control[J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 76-84.
参数 | 取值 |
---|---|
m/kg | 30 |
h1/m | 0.5 |
h2/m | 0.6 |
c0/(N·s·m-1) | 10 |
g/(m·s-2) | 9.8 |
表1 巡检机器人参数
Table 1 Parameters of the inspection robot
参数 | 取值 |
---|---|
m/kg | 30 |
h1/m | 0.5 |
h2/m | 0.6 |
c0/(N·s·m-1) | 10 |
g/(m·s-2) | 9.8 |
角度误差变化率ec | 角度误差e | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | |
NB | PB | PB | PM | PM | PS | PS | ZE |
NM | PB | PM | PS | PS | NS | NS | ZE |
NS | PM | PM | PS | PS | NS | NS | ZE |
ZE | ZE | ZE | ZE | ZE | ZE | ZE | ZE |
PS | NS | NS | NS | PS | NS | NM | NB |
PM | NS | NS | NS | PS | PS | PM | PB |
PB | PS | PS | NS | PB | PM | PB | PB |
表2 ΔKp的模糊控制规则
Table 2 Fuzzy control rule of ΔKp
角度误差变化率ec | 角度误差e | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | |
NB | PB | PB | PM | PM | PS | PS | ZE |
NM | PB | PM | PS | PS | NS | NS | ZE |
NS | PM | PM | PS | PS | NS | NS | ZE |
ZE | ZE | ZE | ZE | ZE | ZE | ZE | ZE |
PS | NS | NS | NS | PS | NS | NM | NB |
PM | NS | NS | NS | PS | PS | PM | PB |
PB | PS | PS | NS | PB | PM | PB | PB |
角度误差变化率ec | 角度误差e | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | |
NB | NB | NB | NB | NM | NM | ZE | ZE |
NM | NB | NM | NS | ZE | PS | PS | PS |
NS | PS | PS | PS | ZE | ZE | ZE | ZE |
ZE | ZE | ZE | ZE | ZE | ZE | ZE | ZE |
PS | PS | PS | PS | ZE | PS | PS | PM |
PM | NB | NB | ZE | ZE | NS | NS | NS |
PB | NB | NB | ZE | ZE | NS | NS | NS |
表3 ΔKi的模糊控制规则
Table 3 Fuzzy control rule of ΔKi
角度误差变化率ec | 角度误差e | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | |
NB | NB | NB | NB | NM | NM | ZE | ZE |
NM | NB | NM | NS | ZE | PS | PS | PS |
NS | PS | PS | PS | ZE | ZE | ZE | ZE |
ZE | ZE | ZE | ZE | ZE | ZE | ZE | ZE |
PS | PS | PS | PS | ZE | PS | PS | PM |
PM | NB | NB | ZE | ZE | NS | NS | NS |
PB | NB | NB | ZE | ZE | NS | NS | NS |
角度误差变化率ec | 角度误差e | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | |
NB | PS | PS | ZE | ZE | ZE | PB | PB |
NM | NS | NS | NS | ZE | PS | PM | PM |
NS | PS | PS | PS | ZE | PS | PS | PS |
ZE | PS | PS | PS | ZE | PS | PS | PS |
PS | PS | PS | PS | ZE | PS | PS | PS |
PM | PM | PM | PS | ZE | PS | PM | PM |
PB | PB | PM | PS | ZE | PS | PM | PB |
表4 ΔKd的模糊控制规则
Table 4 Fuzzy control rule of ΔKd
角度误差变化率ec | 角度误差e | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZE | PS | PM | PB | |
NB | PS | PS | ZE | ZE | ZE | PB | PB |
NM | NS | NS | NS | ZE | PS | PM | PM |
NS | PS | PS | PS | ZE | PS | PS | PS |
ZE | PS | PS | PS | ZE | PS | PS | PS |
PS | PS | PS | PS | ZE | PS | PS | PS |
PM | PM | PM | PS | ZE | PS | PM | PM |
PB | PB | PM | PS | ZE | PS | PM | PB |
参数 | 取值 |
---|---|
旋翼直径D/mm | 200 |
旋翼旋转关节长度L1/mm | 150 |
旋翼摆动关节长度L2/mm | 60 |
行走轮半径r1/mm | 30 |
行走阻尼c0/(N·s·m-1) | 10 |
升降臂原始长度L3/mm | 600 |
同侧旋翼安装距离L4/mm | 1 000 |
电气箱尺寸/(mm×mm×mm) | 1 100×300×200 |
巡检机器人质量m/kg | 30 |
表5 仿真中巡检机器人参数
Table 5 Parameters of the inspection robot in simulation
参数 | 取值 |
---|---|
旋翼直径D/mm | 200 |
旋翼旋转关节长度L1/mm | 150 |
旋翼摆动关节长度L2/mm | 60 |
行走轮半径r1/mm | 30 |
行走阻尼c0/(N·s·m-1) | 10 |
升降臂原始长度L3/mm | 600 |
同侧旋翼安装距离L4/mm | 1 000 |
电气箱尺寸/(mm×mm×mm) | 1 100×300×200 |
巡检机器人质量m/kg | 30 |
样机参数 | 数值 |
---|---|
3D打印材料 | 未来8200树脂 |
行走电机额定电压/V | 12 |
额定转速/(r·min-1) | 15 |
额定转矩/(N·mm) | 20 |
样机滑动速度/(mm·s-1) | 16 |
旋翼直径/mm | 205 |
升降机构原始长度/mm | 150 |
最大伸长长度/mm | 300 |
旋翼电机额定电压/V | 12 |
空载转速/(r·min-1) | 33 600 |
电气箱尺寸/(mm×mm×mm) | 300×150×120 |
样机高度/mm | 380 |
表6 样机参数
Table 6 Prototype parameters
样机参数 | 数值 |
---|---|
3D打印材料 | 未来8200树脂 |
行走电机额定电压/V | 12 |
额定转速/(r·min-1) | 15 |
额定转矩/(N·mm) | 20 |
样机滑动速度/(mm·s-1) | 16 |
旋翼直径/mm | 205 |
升降机构原始长度/mm | 150 |
最大伸长长度/mm | 300 |
旋翼电机额定电压/V | 12 |
空载转速/(r·min-1) | 33 600 |
电气箱尺寸/(mm×mm×mm) | 300×150×120 |
样机高度/mm | 380 |
1 | Yang L, Fan J F, Liu Y H,et al. A review on state-of-the-art power line inspection techniques[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(12): 9350-9365. |
2 | Montambault S, Pouliot N. About the future of power line robotics[C]// International Conference on Applied Robotics for the Power Industry. Montreal: IEEE,2010: 1-6. |
3 | 洪展,吴功平,王伟,等. 风载荷下巡检机器人姿态检测与作业优化[J]. 机械设计与制造,2016(12): 197-200. |
Hong Zhan, Wu Gong-ping, Wang Wei,et al. Attitude detection and operation optimization of inspection robot under wind load[J]. Machinery Design & Manufacture,2016(12): 197-200. | |
4 | 孙翠莲,赵明扬,王洪光. 风荷载下越障巡检机器人结构参数优化[J]. 机械工程学报,2010,46(7): 16-21. |
Sun Cui-lian, Zhao Ming-yang, Wang Hong-guang. Structural parameters optimization of a navigating inspection robot under the wind load[J]. Journal of Mechanical Engineering,2010,46(7): 16-21. | |
5 | Guo J, Zhang X D, Shen H M,et al. Research on wind load characteristics of bionic crawling inspection robot[C]// International Conference on Real-Time Computing and Robotics (RCAR). Irkutsk:IEEE,2019: 385-390. |
6 | Qin X Y, Jia B, Lei J,et al. A novel flying-walking power line inspection robot and stability analysis hanging on the line under wind loads[J]. Mechanical Sciences,2022,13(1): 257-273. |
7 | Jiang W, Yan Y, Li Q M,et al. Research on robust stabilization control of high-voltage power maintenance robot under wind load action[J]. Industrial Robot: The International Journal of Robotics Research and Application,2019,46(6): 870-881. |
8 | Dian S Y, Wen X F, Dong H,et al. Development of a self-balance dual-arm robot for inspection of high-voltage power transmission lines[C]// International Conference on Mechatronics and Automation. Chengdu: IEEE, 2012: 2482-2487. |
9 | Wang W J, He T, Wang H S,et al. Balance control of a novel power transmission line inspection robot[C]// International Conference on Robotics and Biomimetics (ROBIO). Zhuhai: IEEE, 2015: 1882-1887. |
10 | Wang Y G, Yu H D, Xu J K. Design and simulation on inspection robot for high-voltage transmission lines[J]. Applied Mechanics and Materials,2014,615: 173-180. |
11 | Zhao T, Chen Y, Dian S Y,et al. General type-2 fuzzy gain scheduling PID controller with application to power-line inspection robots[J]. International Journal of Fuzzy Systems,2020,22(1): 181-200. |
12 | Pussente G A N, de Aguiar E P, Marcato A L M,et al. UAV power line tracking control based on a type-2 fuzzy-PID approach[J]. Robotics,2023,12(2): 60. |
13 | Raafi’u B, Darwito P A, Adziimaa A F,et al. Comparative study of fuzzy-PID and fuzzy-PI control systems on DC motor speed for four-wheeled mobile robotic[C]// International Conference on Advanced Mechatronics,Intelligent Manufacture and Industrial Automation (ICAMIMIA). Batu: IEEE, 2019: 129-133. |
14 | Wang T T, Wang H Z, Hu H S,et al. An adaptive fuzzy PID controller for speed control of brushless direct current motor[J]. SN Applied Sciences,2022,4(3): 71. |
15 | Bhimte R, Bhole-Ingale K, Shah P,et al. Precise position control of quanser servomotor using fractional order fuzzy PID controller[C]//IEEE Bombay Section Signature Conference (IBSSC). Mumbai: IEEE, 2020: 58-63. |
16 | 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006: 20-45. |
Liu Pei-qing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2006: 20-45. | |
17 | 龚伟俊,李为相,张广明. 基于威布尔分布的风速概率分布参数估计方法[J]. 可再生能源,2011,29(6): 20-23. |
Gong Wei-jun, Li Wei-xiang, Zhang Guang-ming. The estimation algorithm on the probabilistic distribution parameters of wind speed based on Weibull distribution[J]. Renewable Energy Resources,2011,29(6): 20-23. | |
18 | 张猛. 输电线路巡检机器人旋翼系统的机构设计及性能分析[D]. 沈阳: 东北大学,2021. |
Zhang Meng. Mechanism design and performance analysis of rotor system of transmission line inspection robot[D]. Shenyang: Northeastern University,2021. |
[1] | 李小彭, 李凯, 樊星, 张凌越. 双臂巡检机器人位姿变化下沿悬链线行走能力分析[J]. 东北大学学报(自然科学版), 2022, 43(6): 872-880. |
[2] | 李小彭, 樊星, 李凯, 张凌越. 考虑负载时变的线路巡检机器人动态性能分析[J]. 东北大学学报(自然科学版), 2022, 43(5): 660-667. |
[3] | 李小彭, 尚东阳, 李凡杰, 曹伟龙. 输电线巡检机器人动力学建模与DME评价[J]. 东北大学学报:自然科学版, 2020, 41(9): 1280-1284. |
[4] | 李小彭, 尚东阳, 李凡杰, 闻邦椿. 输电线巡检机器人位姿变化的柔性关节控制策略[J]. 东北大学学报:自然科学版, 2020, 41(11): 1577-1583. |
[5] | 房立金, 祝帅, 贺长林, 许继谦. 新型四臂巡检机器人结构设计及转向越障研究[J]. 东北大学学报:自然科学版, 2019, 40(6): 825-830. |
[6] | 房立金, 贺长林, 祝帅, 陶广宏. 串联多臂式巡检机器人控制策略及轨迹规划方法[J]. 东北大学学报:自然科学版, 2019, 40(5): 734-739. |
[7] | 刘云山, 贾磊, 闻邦椿. 反向回转双机驱动振动系统的倍频控制同步[J]. 东北大学学报:自然科学版, 2019, 40(12): 1726-1731. |
[8] | 魏永乐, 房立金, 陶广宏. 双臂巡检机器人越障能力分析[J]. 东北大学学报:自然科学版, 2017, 38(9): 1293-1297. |
[9] | 张秀芝, 贾全, 尚涛, 袁瑞强. 高速水稻插秧机仿形系统控制方法[J]. 东北大学学报:自然科学版, 2016, 37(9): 1288-1292. |
[10] | 房立金,陶广宏. 新型多单元串联巡检机器人机构研究与设计[J]. 东北大学学报:自然科学版, 2014, 35(8): 1173-1177. |
[11] | 李振垒;李海军;王昭东;王国栋;. 热轧板带钢的超快速冷却控制系统[J]. 东北大学学报(自然科学版), 2012, 33(10): 1436-1439+1452. |
[12] | 杨克石;刘杰;谷雨明;韩鹰;. 挖掘机工作装置电液控制系统的抗干扰特性[J]. 东北大学学报(自然科学版), 2010, 31(5): 713-716. |
[13] | 高淑芝;高宪文;朱志承;. 基于变论域模糊PID的汽提塔温度控制方法[J]. 东北大学学报(自然科学版), 2010, 31(10): 1369-1372. |
[14] | 李丽娜;柳洪义;罗忠;孙一兰;. 模糊PID复合控制算法改进及应用[J]. 东北大学学报(自然科学版), 2009, 30(2): 274-278. |
[15] | 王丹;李鑫;王晓光;李明;. 基因型扩增仪的温度控制系统[J]. 东北大学学报(自然科学版), 2008, 29(4): 569-572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||