Prediction for Dynamic Fluid Level of Oil Well Based on GPR with AFSA Optimized Combined Kernel Function
LI Xiang-yu1, GAO Xian-wen1, LI Kun2, HOU Yan-bin1
1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. College of Engineering, Bohai University, Jinzhou 121013, China.
LI Xiang-yu, GAO Xian-wen, LI Kun, HOU Yan-bin. Prediction for Dynamic Fluid Level of Oil Well Based on GPR with AFSA Optimized Combined Kernel Function[J]. Journal of Northeastern University Natural Science, 2017, 38(1): 11-15.
[1]Li K,Gao X W,Tian Z D,et al.Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit[J].Petroleum Science,2013,10(1):73-80. [2]Xing M M,Dong S M,Tong Z X,et al.Dynamic simulation and efficiency analysis of beam pumping system[J].Journal of Central South University,2015,22(9):3367-3379. [3]Luan G H,He S L,Yang Z,et al.A prediction model for a new deep-rod pumping system[J].Journal of Petroleum Science and Engineering,2012,80(1):75-80. [4]Liu Z,Wang H,Yang D.Determination of real-time dynamic fluid levels by analysis of the dynamometer card[C]// Canadian International Petroleum Conference.Calgary:Petroleum Society of Canada,2007:1-8. [5]Yang H T,Mu L J,Zeng Y Q,et al.Real time calculation of fluid level using dynamometer card of sucker rod pump well[C]// International Petroleum Technology Conference.Kuala Lumpur:International Petroleum Technology Conference,2014:1-7. [6]Li X Y,Gao X W,Cui Y B,et al.Dynamic liquid level modeling of sucker-rod pumping systems based on Gaussian process regression[C]// 2013 Ninth International Conference on Natural Computation (ICNC).Shenyang,2013:917-922. [7]李翔宇,高宪文,侯延彬.基于在线动态高斯过程回归抽油井动液面软测量建模[J].化工学报,2015,66(6):2150-2158.(Li Xiang-yu,Gao Xian-wen,Hou Yan-bin.Online dynamic Gaussian process regression for dynamic liquid level soft sensing of sucker-rod pumping well[J].Journal of Chemical Industry and Engineering,2015,66(6):2150-2158.) [8]王通,高宪文,蒋子健.基于黑洞算法的LSSVM的参数优化[J].东北大学学报(自然科学版),2014,35(2):170-174.(Wang Tong,Gao Xian-wen,Jiang Zi-jian,et al.Parameters optimizing of LSSVM based on black hole algorithm[J].Journal of Northeastern University(Natural Science),2014,35(2):170-174.) [9]田中大,高宪文,石彤.用于混沌时间序列预测的组合核函数最小二乘支持向量机[J].物理学报,2014,63(16):160508-1-160508-11.(Tian Zhong-da,Gao Xia-wen,Shi Tong.Combination kernel function least squares support vector machine for chaotic time series prediction [J].Acta Physica Sinica,2014,63(16):160508-1-160508-11.) [10]魏立新,张峻林,刘青松.基于改进人工鱼群算法的神经网络优化[J].控制工程,2014,21(1):84-87.(Wei Li-xin,Zhang Jun-lin,Liu Qing-song.Optimization of neural network based on improved fish algorithm [J].Control Engineering of China,2014,21(1):84-87.)