Simulation of Natural Convection in Square Porous Cavity Based on Chebyshev Spectral Method
CHEN Yuan-yuan1,2, LI Ben-wen3, ZHANG Jing-kui2
1. Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China; 2. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; 3. School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China.
CHEN Yuan-yuan, LI Ben-wen, ZHANG Jing-kui. Simulation of Natural Convection in Square Porous Cavity Based on Chebyshev Spectral Method[J]. Journal of Northeastern University Natural Science, 2017, 38(4): 522-526.
[1]Baytas A C,Pop I.Free convection in oblique enclosures filled with a porous medium[J].International Journal of Heat and Mass Transfer,1999,42(6):1047-1057. [2]Baytas A C,Pop I.Natural convection in a trapezoidal enclosure filled with a porous medium[J].International Journal of Engineering Science,2001,39(1):125-134. [3]Baytas A C,Pop I.Free convection in a square porous cavity using a thermal nonequilibrium model[J].International Journal of Thermal Sciences,2002,41(6):861-870. [4]Misirlioglu A,Baytas A C,Pop I.Free convection in a wavy cavity filled with a porous medium[J].International Journal of Heat and Mass Transfer,2005,48(9):1840-1850. [5]Ma X,Zabaras N.A stabilized stochastic finite element second-order projection method for modeling natural convection in random porous media[J].Journal of Computational Physics,2008,227(8):8448-8471. [6]Gao D Y,Chen Z Q,Chen L H.A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions[J]. International Journal of Heat and Mass Transfer,2014,70:979-989. [7]Subich C J,Lamb K G,Stastna M.Simulation of the Naviere-Stokes equations in three dimensions with a spectral collocation method[J].International Journal for Numerical Methods in Fluids,2013,73(1):103-129. [8]Li B W,Sun Y S,Yu Y.Iterative and direct Chebyshev collocation spectral methods for one-dimensional radiative heat transfer[J].International Journal of Heat and Mass Transfer,2008,51(5):5887-5894. [9]Zhang J K,Li B W,Chen Y Y.Hall effects on natural convection of participating MHD with thermal radiation in a cavity[J].International Journal of Heat and Mass Transfer,2013,66:838-843. [10]Li Z C,Chen S Y,Chen C S,et al.A spectral collocation method for a rotating Bose-Einstein condensation in optical lattices[J].Computer Physics Communications,2011,182(6):1215-1234. [11]Khandelwal M K,Bera P,Chakrabarti A.Influence of periodicity of sinusoidal bottom boundary condition on natural convection in porous enclosure[J].International Journal of Heat and Mass Transfer,2012,55(11):2889-2900. [12]Canuto C,Hussaini M Y,Quarteroni A,et al.Spectral methods:fundamentals in single domains[M].Berlin:Springer,2006. [13]Peyret R.Spectral method for incompressible viscous flow[M].New York:Springer,2002. [14]Manole D M,Lage J L.Numerical benchmark results for natural convection in a porous medium cavity[J].ASME Publications Heat Transfer Division,1993,216:55-55. [15]Moya S L,Ramos E,Sen M.Numerical study of natural convection in a tilted rectangular porous material[J].International Journal of Heat and Mass Transfer,1987,30(4):741-756. [16]Chen Y Y,Li B W,Zhang J K.Spectral collocation method for natural convection in a square porous cavity with local thermal equilibrium and non-equilibrium models[J].International Journal of Heat and Mass Transfer,2016,96:84-96.