LIU Xin, ZHANG Wei-jun, SHI Quan, ZHOU Le. Operation Parameters Optimization of Blast Furnaces Based on Data Mining and Cleaning[J]. Journal of Northeastern University Natural Science, 2020, 41(8): 1153-1160.
[1]张寿荣,于仲洁.中国炼铁技术60年的发展[J].钢铁,2014,49(7):8-14.(Zhang Shou-rong,Yu Zhong-jie.Development of ironmaking technology in the past 60 years[J].Iron and Steel,2014,49(7):8-14.) [2]周渝生,曹传根,甘菲芳.高炉长寿技术的最新进展[J].钢铁,2003,38(11):70-74,8.(Zhou Yu-sheng,Cao Chuan-gen,Gan Fei-fang.Recent development of BF long-campaign technology[J].Iron and Steel,2003,38(11):70-74,8.) [3]徐雪松,杨胜杰.大数据背景下中国钢铁生产能源管控路径优化研究[J].工业技术经济,2017,36(1):32-40.(Xu Xue-song,Yang Sheng-jie.The optimization of iron and steel enterprises energy management under the background of big data[J].Journal of Industrial Technological Economics,2017,36(1):32-40.) [4]王钧超.大数据时代产业经济信息分析及在宏观决策中的应用[D].北京:中国地质大学,2016.(Wang Jun-chao.Analysis of industrial economic information and its application in macro decision in the era of big data.[D].Beijing:China University of Geosciences,2016.) [5]Krumeich J,Werth D,Loos P,et al.Advanced planning and control of manufacturing processes in steel industry through big data analytics:case study and architecture proposal[C/OL]//IEEE International Conference on Big Data.Washington DC,2014[2019-08-25].https://ieeexplore.ieee.org/document/7004408. [6]Guo S,Yu J X,Liu X J,et al.A predicting model for properties of steel using the industrial big data based on machine learning[J].Computational Materials Science,2019,160:95-104. [7]Kang L,Du H L,Zhang H,et al.Systematic research on the application of steel slag resources under the background of big data[J/OL].Complexity,2018[2019-08-05].https://www.hindawi.com/journals/complexity/2018/6703908/. [8]中冶京诚全流程大数据分析系统探索智慧钢铁[N].世界金属导报,2018-11-27.(The whole process of big data analysis system to explore the wisdom of steel—CERI[N].World Metal Report,2018-11-27.) [9]白瑞国,徐立山,包阔,等.大数据过程质量控制系统在钢铁生产中的应用[J].中国冶金,2018,28(8):76-80.(Bai Rui-guo,Xu Li-shan,Bao Kuo,et al.Application of big data process quality control system in iron and steel production[J].China Metallurgy,2018,28(8):76-80.) [10]Brandenburger J,Colla V,Nastasi G,et al.Big data solution for quality monitoring and improvement on flat steel production[J].IFAC:Papers On Line,2016,49(20):55-60. [11]Han Y,Li J,Yang X L,et al.Dynamic prediction research of silicon content in hot metal driven by big data in blast furnace smelting process under Hadoop cloud platform[J/OL].Complexity,2018[2019-08-25].https://doi.org/10.1155/2018/8079697. [12]Hua C,Wu J,Li J,et al.Silicon content prediction and industrial analysis on blast furnace using support vector regression combined with clustering algorithms[J].Neural Computing and Applications,2017,28(12):4111-4121. [13]吕庆,刘月明,张振峰,等.基于承钢生产数据预测烧结矿FeO含量[J].钢铁研究学报,2018,30(12):957-962.(Lyu qing,Liu Yue-ming,Zhang Zhen-feng,et al.Prediction of FeO content in sinter based on production data of Chengde Steel Mill[J].Journal of Iron and Steel Research,2018,30(12):957-962.) [14]吕庆,刘颂,刘小杰,等.基于大数据技术的烧结全产线质量智能控制系统[J].钢铁,2018,53(7):1-9.(Lyu qing,Liu song,Liu Xiao-jie,et al.Intelligent control system based on big data technology for whole production line of sintering quality[J].Iron and Steel,2018,53(7):1-9.) [15]马富涛,张建良,张磊,等.铁前数模技术进展与大数据应用探讨[J].钢铁,2018,53(12):1-9.(Ma Fu-tao,Zhang Jian-liang,Zhang lei,et al.Introduction of development and progress of mathematical modeling technology in iron-making area and discussion on application prospects of big data technology[J].Iron and Steel,2018,53(12):1-9.) [16]Dixon B E,Duke J,Grannis S.Measuring and improving the quality of data used for syndromic surveillance[J].Online Journal of Public Health Informatics,2017,9(1):182-189. [17]Genuer R,Poggi J M,Malot C T.Variable selection using random forests[J].Pattern Recognition Letters,2010,31(14):2225-2236. [15]关守平,房少纯.一种新型的区间-粒子群优化算法[J].东北大学学报(自然科学版),2012,33(10):1381-1384.(Guan Shou-ping,Fang Shao-chun.A new interval particle swarm optimization algorithm[J].Journal of Northeastern University(Natural Science),2012,33(10):1381-1384.)